

HeuDiConv

a heuristic-centric DICOM converter

[image: Our Docker image]
 [https://hub.docker.com/r/nipy/heudiconv/tags/][image: TravisCI]
 [https://travis-ci.org/nipy/heudiconv][image: CodeCoverage]
 [https://codecov.io/gh/nipy/heudiconv][image: Readthedocs]
 [http://heudiconv.readthedocs.io/en/latest/?badge=latest][image: Zenodo (latest)]
 [https://doi.org/10.5281/zenodo.1012598]
About

heudiconv is a flexible DICOM converter for organizing brain imaging data
into structured directory layouts.

	it allows flexible directory layouts and naming schemes through customizable heuristics implementations

	it only converts the necessary DICOMs, not everything in a directory

	you can keep links to DICOM files in the participant layout

	using dcm2niix under the hood, it’s fast

	it can track the provenance of the conversion from DICOM to NIfTI in W3C PROV format

	it provides assistance in converting to BIDS [http://bids.neuroimaging.io/].

	it integrates with DataLad [https://www.datalad.org/] to place converted and original data under git/git-annex version control, while automatically annotating files with sensitive information (e.g., non-defaced anatomicals, etc)

How to cite

Please use Zenodo record [https://doi.org/10.5281/zenodo.1012598] for
your specific version of HeuDiConv. We also support gathering
all relevant citations via DueCredit [http://duecredit.org].

Contents

	Installation
	Local

	Docker

	Singularity

	Changes
	Changelog

	Usage
	CommandLine Arguments

	Support

	Batch jobs

	Heuristic
	Components

	User Tutorials

	API Reference
	BIDS

	Conversion

	DICOMS

	Parsing

	Batch Queuing

	Utility

Installation

Heudiconv is packaged and available from many different sources.

Local

Released versions of HeuDiConv are available on PyPI [https://pypi.org/project/heudiconv/]
and conda [https://github.com/conda-forge/heudiconv-feedstock#installing-heudiconv].
If installing through PyPI, eg:

pip install heudiconv[all]

Manual installation of dcm2niix [https://github.com/rordenlab/dcm2niix#install]
is required.

On Debian-based systems we recommend using NeuroDebian [http://neuro.debian.net]
which provides the heudiconv package [http://neuro.debian.net/pkgs/heudiconv.html].

Docker

If Docker [https://docs.docker.com/install/] is available on your system, you
can visit our page on Docker Hub [https://hub.docker.com/r/nipy/heudiconv/tags]
to view available releases. To pull the latest release, run:

$ docker pull nipy/heudiconv:0.10.0

Singularity

If Singularity [https://www.sylabs.io/singularity/] is available on your system,
you can use it to pull and convert our Docker images! For example, to pull and
build the latest release, you can run:

$ singularity pull docker://nipy/heudiconv:0.10.0

Changes

Changelog

All notable changes to this project will be documented (for humans) in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/]
and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

[0.10.0] - 2021-09-16

Various improvements and compatibility/support (dcm2niix, datalad) changes.

Added

	Add “AcquisitionTime” to the seqinfo (#487 [https://github.com/nipy/heudiconv/issues/487])

	Add support for saving the Phoenix Report in the sourcedata folder (#489 [https://github.com/nipy/heudiconv/issues/489])

Changed

	Python 3.5 EOLed, supported (tested) versions now: 3.6 - 3.9

	In reprorin heuristic, allow for having multiple accessions since now there is
-g all groupping (#508 [https://github.com/nipy/heudiconv/issues/508])

	For BIDS, produce a singular scans.json at the top level, and not one per
sub/ses (generates too many identical files) (#507 [https://github.com/nipy/heudiconv/issues/507])

Fixed

	Compatibility with DataLad 0.15.0. Minimal version is 0.13.0 now.

	Try to open top level BIDS .json files a number of times for adjustment,
so in the case of competition across parallel processes, they just end up
with the last one “winning over” (#523 [https://github.com/nipy/heudiconv/issues/523])

	Don’t fail if etelemetry.get_project returns None (#501 [https://github.com/nipy/heudiconv/issues/501])

	Consistently use n/a for age/sex, also handle ?M for months (#500 [https://github.com/nipy/heudiconv/issues/500])

	To avoid crashing on unrelated derivatives files etc, make find_files to
take list of topdirs (excluding derivatives/ etc),
and look for _bold only under sub-* directories (#496 [https://github.com/nipy/heudiconv/issues/496])

	Ensure bvec/bval files are only created for dwi output (#491 [https://github.com/nipy/heudiconv/issues/491])

Removed

	In reproin heuristic, old hardcoded sequence renamings and filters (#508 [https://github.com/nipy/heudiconv/issues/508])

[0.9.0] - 2020-12-23

Various improvements and compatibility/support (dcm2niix, datalad,
duecredit) changes. Major change is placement of output files to the
target output directory during conversion.

Added

	#454 zenodo referencing in README.rst and support for ducredit for
heudiconv and reproin heuristic

	#445 more tutorial references in README.md

Changed

	#485 [https://github.com/nipy/heudiconv/issues/485] placed files during conversion right away into the target
directory (with a _heudiconv??? suffix, renamed into ultimate target
name later on), which avoids hitting file size limits of /tmp (#481 [https://github.com/nipy/heudiconv/issues/481]) and
helped to avoid a regression in dcm2nixx 1.0.20201102

	#477 [https://github.com/nipy/heudiconv/issues/477] replaced rec-<magnitude|phase> with part-<mag|phase> now
hat BIDSsupports the part entity

	#473 [https://github.com/nipy/heudiconv/issues/473] made default for CogAtlasID to be a TODO URL

	#459 [https://github.com/nipy/heudiconv/issues/459] made AcquisitionTime used for acq_time scans file field

	#451 [https://github.com/nipy/heudiconv/issues/451] retained sub-second resolution in scans files

	#442 [https://github.com/nipy/heudiconv/issues/442] refactored code so there is now heudiconv.main.workflow for
more convenient use as a Python module

Fixed

	minimal version of nipype set to 1.2.3 to guarantee correct handling
of DWI files (#480 [https://github.com/nipy/heudiconv/issues/480])

	heudiconvDCM* temporary directories are removed now (#462 [https://github.com/nipy/heudiconv/issues/462])

	compatibility with DataLad 0.13 (#464 [https://github.com/nipy/heudiconv/issues/464])

Removed

	#443 pathlib as a dependency (we are Python3 only now)

[0.8.0] - 2020-04-15

Enhancements

	Centralized saving of .json files. Indentation of some files could
change now from previous versions where it could have used 3
spaces. Now indentation should be consistently 2 for .json files
we produce/modify (#436 [https://github.com/nipy/heudiconv/issues/436]) (note: dcm2niix uses tabs for indentation)

	ReproIn heuristic: support SBRef and phase data (#387 [https://github.com/nipy/heudiconv/issues/387])

	Set the “TaskName” field in .json sidecar files for multi-echo data
(#420 [https://github.com/nipy/heudiconv/issues/420])

	Provide an informative exception if command needs heuristic to be
specified (#437 [https://github.com/nipy/heudiconv/issues/437])

Refactored

	embed_nifti was refactored into embed_dicom_and_nifti_metadata
which would no longer create .nii file if it does not exist
already (#432 [https://github.com/nipy/heudiconv/issues/432])

Fixed

	Skip datalad-based tests if no datalad available (#430 [https://github.com/nipy/heudiconv/issues/430])

	Search heuristic file path first so we do not pick up a python
module if name conflicts (#434 [https://github.com/nipy/heudiconv/issues/434])

[0.7.0] - 2020-03-20

Removed

	Python 2 support/testing

Enhancement

	-g option obtained two new modes: all and custom. In case of all,
all provided DICOMs will be treated as coming from a single scanning session.
custom instructs to use .grouping value (could be a DICOM attribute or
a callable)provided by the heuristic (#359 [https://github.com/nipy/heudiconv/issues/359]).

	Stop before reading pixels data while gathering metadata from DICOMs (#404 [https://github.com/nipy/heudiconv/issues/404])

	reproin heuristic:

	In addition to original “md5sum of the study_description” protocols2fix
could now have (and applied after md5sum matching ones)
1). a regular expression searched in study_description,
2). an empty string as “catch all”.
This features could be used to easily provide remapping into reproin
naming (documentation is to come to http://github.com/ReproNim/reproin)
(#425 [https://github.com/nipy/heudiconv/issues/425])

Fixed

	Use nan, not None for absent echo value in sorting

	reproin heuristic: case seqinfos into a list to be able to modify from
overloaded heuristic (#419 [https://github.com/nipy/heudiconv/issues/419])

	No spurious errors from the logger upon a warning about etelemetry
absence (#407 [https://github.com/nipy/heudiconv/issues/407])

[0.6.0] - 2019-12-16

This is largely a bug fix. Metadata and order of _key-value fields in BIDS
could change from the result of converting using previous versions, thus minor
version boost.
14 people contributed to this release – thanks
everyone [https://github.com/nipy/heudiconv/graphs/contributors]!

Enhancement

	Use etelemetry [https://pypi.org/project/etelemetry] to inform about most
recent available version of heudiconv. Please set NO_ET environment variable
if you want to disable it (#369 [https://github.com/nipy/heudiconv/issues/369])

	BIDS:

	--bids flag became an option. It can (optionally) accept notop value
to avoid creation of top level files (CHANGES, dataset_description.json,
etc) as a workaround during parallel execution to avoid race conditions etc.
(#344 [https://github.com/nipy/heudiconv/issues/344])

	Generate basic .json files with descriptions of the fields for
participants.tsv and _scans.tsv files (#376 [https://github.com/nipy/heudiconv/issues/376])

	Use filelock while writing top level files. Use
HEUDICONV_FILELOCK_TIMEOUT environment to change the default timeout value
(#348 [https://github.com/nipy/heudiconv/issues/348])

	_PDT2 was added as a suffix for multi-echo (really “multi-modal”)
sequences (#345 [https://github.com/nipy/heudiconv/issues/345])

	Calls to dcm2niix would include full output path to make it easier to
discern in the logs what file it is working on (#351 [https://github.com/nipy/heudiconv/issues/351])

	With recent `datalad <>`_ (>= 0.10), created DataLad dataset will use
--fake-dates functionality of DataLad to not leak data conversion dates,
which might be close to actual data acquisition/patient visit (#352 [https://github.com/nipy/heudiconv/issues/352])

	Support multi-echo EPI _phase data (#373 [https://github.com/nipy/heudiconv/issues/373] fixes #368 [https://github.com/nipy/heudiconv/issues/368])

	Log location of a bad .json file to ease troubleshooting (#379 [https://github.com/nipy/heudiconv/issues/379])

	Add basic pypi classifiers for the package (#380 [https://github.com/nipy/heudiconv/issues/380])

Fixed

	Sorting _scans.tsv files lacking valid dates field should not cause a crash
(#337 [https://github.com/nipy/heudiconv/issues/337])

	Multi-echo files detection based number of echos (#339 [https://github.com/nipy/heudiconv/issues/339])

	BIDS

	Use EchoTimes from the associated multi-echo files if EchoNumber tag is
missing (#366 [https://github.com/nipy/heudiconv/issues/366] fixes #347 [https://github.com/nipy/heudiconv/issues/347])

	Tolerate empty ContentTime and/or ContentDate in DICOMs (#372 [https://github.com/nipy/heudiconv/issues/372]) and place
“n/a” if value is missing (#390 [https://github.com/nipy/heudiconv/issues/390])

	Do not crash and store original .json file is “JSON pretification” fails
(#342 [https://github.com/nipy/heudiconv/issues/342])

	ReproIn heuristic

	tolerate WIP prefix on Philips scanners (#343 [https://github.com/nipy/heudiconv/issues/343])

	allow for use of (...) instead of {...} since {} are not allowed
(#343 [https://github.com/nipy/heudiconv/issues/343])

	Support pipolar fieldmaps by providing them with _epi not _magnitude.
“Loose” BIDS _key-value pairs might come now after _dir- even if they
came first before (#358 [https://github.com/nipy/heudiconv/issues/358] fixes #357 [https://github.com/nipy/heudiconv/issues/357])

	All heuristics saved under .heudiconv/ under heuristic.py name, to avoid
discrepancy during reconversion (#354 [https://github.com/nipy/heudiconv/issues/354] fixes #353 [https://github.com/nipy/heudiconv/issues/353])

	Do not crash (with TypeError) while trying to sort absent file list (#360 [https://github.com/nipy/heudiconv/issues/360])

	heudiconv requires nipype >= 1.0.0 (#364 [https://github.com/nipy/heudiconv/issues/364]) and blacklists 1.2.[12] (#375 [https://github.com/nipy/heudiconv/issues/375])

[0.5.4] - 2019-04-29

This release includes fixes to BIDS multi-echo conversions, the
re-implementation of queuing support (currently just SLURM), as well as
some bugfixes.

Starting today, we will (finally) push versioned releases to DockerHub.
Finally, to more accurately reflect on-going development, the latest
tag has been renamed to unstable.

Added

	Readthedocs documentation (#327 [https://github.com/nipy/heudiconv/issues/327])

Changed

	Update Docker dcm2niix to v.1.0.20190410 (#334 [https://github.com/nipy/heudiconv/issues/334])

	Allow usage of --files with basic heuristics. This requires
use of --subject flag, and is limited to one subject. (#293 [https://github.com/nipy/heudiconv/issues/293])

Deprecated

Fixed

	Improve support for multiple --queue-args (#328 [https://github.com/nipy/heudiconv/issues/328])

	Fixed an issue where generated BIDS sidecar files were missing additional
information - treating all conversions as if the --minmeta flag was
used (#306 [https://github.com/nipy/heudiconv/issues/306])

	Re-enable SLURM queuing support (#304 [https://github.com/nipy/heudiconv/issues/304])

	BIDS multi-echo support for EPI + T1 images (#293 [https://github.com/nipy/heudiconv/issues/293])

	Correctly handle the case when outtype of heuristic has “dicom”
before ‘.nii.gz’. Previously would have lead to absent additional metadata
extraction etc (#310 [https://github.com/nipy/heudiconv/issues/310])

Removed

	--sbargs argument was renamed to --queue-args (#304 [https://github.com/nipy/heudiconv/issues/304])

Security

[0.5.3] - 2019-01-12

Minor hot bugfix release

Fixed

	Do not shorten spaces in the dates while pretty printing .json

[0.5.2] - 2019-01-04

A variety of bugfixes

Changed

	Reproin heuristic: __dup indices would now be assigned incrementally
individually per each sequence, so there is a chance to properly treat
associate for multi-file (e.g. fmap) sequences

	Reproin heuristic: also split StudyDescription by space not only by ^

	tests/ moved under heudiconv/tests to ease maintenance and facilitate
testing of an installed heudiconv

	Protocol name will also be accessed from private Siemens
csa.tProtocolName header field if not present in public one

	nipype>=0.12.0 is required now

Fixed

	Multiple files produced by dcm2niix are first sorted to guarantee
correct order e.g. of magnitude files in fieldmaps, which otherwise
resulted in incorrect according to BIDS ordering of them

	Aggregated top level .json files now would contain only the fields
with the same values from all scanned files. In prior versions,
those files were not regenerated after an initial conversion

	Unicode handling in anonimization scripts

[0.5.1] - 2018-07-05

Bugfix release

Added

	Video tutorial / updated slides

	Helper to set metadata restrictions correctly

	Usage is now shown when run without arguments

	New fields to Seqinfo

	series_uid

	Reproin heuristic support for xnat
Changed

	Dockerfile updated to use dcm2niix v1.0.20180622

	Conversion table will be regenerated if heurisic has changed

	Do not touch existing BIDS files

	events.tsv

	task JSON
Fixed

	Python 2.7.8 and older installation

	Support for updated packages

	Datalad 0.10

	pydicom 1.0.2

	Later versions of pydicom are prioritized first

	JSON pretty print should not remove spaces

	Phasediff fieldmaps behavior

	ensure phasediff exists

	support for single magnitude acquisitions

[0.5] - 2018-03-01

The first release after major refactoring:

Changed

	Refactored into a proper heudiconv Python module

	heuristics is now a heudiconv.heuristics submodule

	you can specify shipped heuristics by name (e.g. -f reproin)
without providing full path to their files

	you need to use --files (not just positional argument(s)) if not
using --dicom_dir_templates or --subjects to point to data files
or directories with input DICOMs

	Dockerfile is generated by neurodocker [https://github.com/kaczmarj/neurodocker]

	Logging verbosity reduced

	Increased leniency with missing DICOM fields

	dbic_bids heuristic renamed into reproin
Added

	LICENSE [https://github.com/nipy/heudiconv/blob/master/LICENSE]
with Apache 2.0 license for the project

	CHANGELOG.md [https://github.com/nipy/heudiconv/blob/master/CHANGELOG.md]

	Regression testing [https://github.com/nipy/heudiconv/blob/master/tests/test_regression.py] on real data (using datalad)

	A dedicated ReproIn [https://github.com/repronim/reproin] project
with details about ReproIn setup/specification and operation using
reproin heuristic shipped with heudiconv

	utils/test-compare-two-versions.sh
helper to compare conversions with two different versions of heudiconv
Removed

	Support for converters other than dcm2niix, which is now the default.
Explicitly specify -c none to only prepare conversion specification
files without performing actual conversion
Fixed

	Compatibility with Nipype 1.0, PyDicom 1.0, and upcoming DataLad 0.10

	Consistency with converted files permissions

	Ensured subject id for BIDS conversions will be BIDS compliant

	Re-add seqinfo fields as column names in generated dicominfo

	More robust sanity check of the regex reformatted .json file to avoid
numeric precision issues

	Many other various issues

[0.4] - 2017-10-15

A usable release to support DBIC [http://dbic.dartmouth.edu] use-case

Added

	more testing
Changes

	Dockerfile updates (added pigz, progressed forward dcm2niix [https://github.com/rordenlab/dcm2niix])
Fixed

	correct date/time in BIDS _scans files

	sort entries in _scans by date and then filename

[0.3] - 2017-07-10

A somewhat working release on the way to support DBIC [http://dbic.dartmouth.edu] use-case

Added

	more tests

	groupping of dicoms by series if provided

	many more features and fixes

[0.2] - 2016-10-20

An initial release on the way to support DBIC [http://dbic.dartmouth.edu] use-case

Added

	basic Python project assets (setup.py, etc)

	basic tests

	datalad [http://datalad.org] support

	dbic_bids heuristic

	--dbg command line flag to enter pdb environment upon failure
Fixed

	Better Python3 support

	Better PEP8 compliance

[0.1] - 2015-09-23

Initial version

Just a template for future records:

[Unreleased] - Date

TODO Summary

Added

Changed

Deprecated

Fixed

Removed

Security

References

Usage

heudiconv processes DICOM files and converts the output into user defined
paths.

CommandLine Arguments

	Example:

	heudiconv -d ‘rawdata/{subject}’ -o . -f heuristic.py -s s1 s2 s3

usage: heudiconv [-h] [--version]
 [-d DICOM_DIR_TEMPLATE | --files [FILES [FILES ...]]]
 [-s [SUBJS [SUBJS ...]]] [-c {dcm2niix,none}] [-o OUTDIR]
 [-l LOCATOR] [-a CONV_OUTDIR] [--anon-cmd ANON_CMD]
 [-f HEURISTIC] [-p] [-ss SESSION]
 [-b [BIDSOPTION1 [BIDSOPTION2 ...]]] [--overwrite]
 [--datalad] [--dbg]
 [--command {heuristics,heuristic-info,ls,populate-templates,sanitize-jsons,treat-jsons}]
 [-g {studyUID,accession_number,all,custom}] [--minmeta]
 [--random-seed RANDOM_SEED] [--dcmconfig DCMCONFIG]
 [-q {SLURM,None}] [--queue-args QUEUE_ARGS]

Named Arguments

	--version

	show program’s version number and exit

	-d, --dicom_dir_template

	Location of dicomdir that can be indexed with subject id {subject} and session {session}. Tarballs (can be compressed) are supported in addition to directory. All matching tarballs for a subject are extracted and their content processed in a single pass. If multiple tarballs are found, each is assumed to be a separate session and the –ses argument is ignored. Note that you might need to surround the value with quotes to avoid {…} being considered by shell

	--files

	Files (tarballs, dicoms) or directories containing files to process. Cannot be provided if using –dicom_dir_template.

	-s, --subjects

	List of subjects - required for dicom template. If not provided, DICOMS would first be “sorted” and subject IDs deduced by the heuristic.

	-c, --converter

	Possible choices: dcm2niix, none

Tool to use for DICOM conversion. Setting to “none” disables the actual conversion step – useful for testing heuristics.

	-o, --outdir

	Output directory for conversion setup (for further customization and future reference. This directory will refer to non-anonymized subject IDs.

	-l, --locator

	Study path under outdir. If provided, it overloads the value provided by the heuristic. If –datalad is enabled, every directory within locator becomes a super-dataset thus establishing a hierarchy. Setting to “unknown” will skip that dataset.

	-a, --conv-outdir

	Output directory for converted files. By default this is identical to –outdir. This option is most useful in combination with –anon-cmd.

	--anon-cmd

	Command to run to convert subject IDs used for DICOMs to anonymized IDs. Such command must take a single argument and return a single anonymized ID. Also see –conv-outdir.

	-f, --heuristic

	Name of a known heuristic or path to the Python script containing heuristic.

	-p, --with-prov

	Store additional provenance information. Requires python-rdflib.

	-ss, --ses

	Session for longitudinal study_sessions. Default is None.

	-b, --bids

	Possible choices: notop

Flag for output into BIDS structure. Can also take BIDS-specific options, e.g., –bids notop. The only currently supported options is “notop”, which skips creation of top-level BIDS files. This is useful when running in batch mode to prevent possible race conditions.

	--overwrite

	Overwrite existing converted files.

	--datalad

	Store the entire collection as DataLad dataset(s). Small files will be committed directly to git, while large to annex. New version (6) of annex repositories will be used in a “thin” mode so it would look to mortals as just any other regular directory (i.e. no symlinks to under .git/annex). For now just for BIDS mode.

	--dbg

	Do not catch exceptions and show exception traceback.

	--command

	Possible choices: heuristics, heuristic-info, ls, populate-templates, sanitize-jsons, treat-jsons

Custom action to be performed on provided files instead of regular operation.

	-g, --grouping

	Possible choices: studyUID, accession_number, all, custom

How to group dicoms (default: by studyUID).

	--minmeta

	Exclude dcmstack meta information in sidecar jsons.

	--random-seed

	Random seed to initialize RNG.

	--dcmconfig

	JSON file for additional dcm2niix configuration.

Conversion submission options

	-q, --queue

	Possible choices: SLURM, None

Batch system to submit jobs in parallel.

	--queue-args

	Additional queue arguments passed as a single string of space-separated Argument=Value pairs.

Support

All bugs, concerns and enhancement requests for this software can be submitted here:
https://github.com/nipy/heudiconv/issues.

If you have a problem or would like to ask a question about how to use heudiconv,
please submit a question to NeuroStars.org [http://neurostars.org/tags/heudiconv] with a heudiconv tag.
NeuroStars.org is a platform similar to StackOverflow but dedicated to neuroinformatics.

All previous heudiconv questions are available here:
http://neurostars.org/tags/heudiconv/

Batch jobs

heudiconv can natively handle multi-subject, multi-session conversions,
although it will process these linearly. To speed this up, multiple heudiconv
processes can be spawned concurrently, each converting a different subject and/or
session.

The following example uses SLURM and Singularity to submit every subjects’
DICOMs as an independent heudiconv execution.

The first script aggregates the DICOM directories and submits them to
run_heudiconv.sh with SLURM as a job array.

If using bids, the notop bids option suppresses creation of
top-level files in the bids directory (e.g.,
dataset_description.json) to avoid possible race conditions.
These files may be generated later with populate_templates.sh
below (except for participants.tsv, which must be create
manually).

#!/bin/bash

set -eu

where the DICOMs are located
DCMROOT=/dicom/storage/voice
where we want to output the data
OUTPUT=/converted/data/voice

find all DICOM directories that start with "voice"
DCMDIRS=(`find ${DCMROOT} -maxdepth 1 -name voice* -type d`)

submit to another script as a job array on SLURM
sbatch --array=0-`expr ${#DCMDIRS[@]} - 1` run_heudiconv.sh ${OUTPUT} ${DCMDIRS[@]}

The second script processes a DICOM directory with heudiconv using the built-in
reproin heuristic.

#!/bin/bash
set -eu

OUTDIR=${1}
receive all directories, and index them per job array
DCMDIRS=(${@:2})
DCMDIR=${DCMDIRS[${SLURM_ARRAY_TASK_ID}]}
echo Submitted directory: ${DCMDIR}

IMG="/singularity-images/heudiconv-0.10.0-dev.sif"
CMD="singularity run -B ${DCMDIR}:/dicoms:ro -B ${OUTDIR}:/output -e ${IMG} --files /dicoms/ -o /output -f reproin -c dcm2niix -b notop --minmeta -l ."

printf "Command:\n${CMD}\n"
${CMD}
echo "Successful process"

This script creates the top-level bids files (e.g.,
dataset_description.json)

	..code:: shell

	#!/bin/bash
set -eu

OUTDIR=${1}
IMG=”/singularity-images/heudiconv-0.10.0-dev.sif”
CMD=”singularity run -B ${OUTDIR}:/output -e ${IMG} –files /output -f reproin –command populate-templates”

printf “Command:n${CMD}n”
${CMD}
echo “Successful process”

Heuristic

The heuristic file controls how information about the DICOMs is used to convert
to a file system layout (e.g., BIDS). heudiconv includes some built-in
heuristics, including ReproIn [https://github.com/ReproNim/reproin/blob/master/README.md]
(which is great to adopt if you will be starting your data collection!).

However, there is a large variety of data out there, and not all DICOMs will be
covered by the existing heuristics. This section will outline what makes up a
heuristic file, and some useful functions available when making one.

Components

infotodict(seqinfos)

The only required function for a heuristic, infotodict is used to both define
the conversion outputs and specify the criteria for scan to output association.
Conversion outputs are defined as keys, a tuple consisting of a template path
used for the basis of outputs, as well as a tuple of output types. Valid types
include nii, nii.gz, and dicom.

Note

An example conversion key

('sub-{subject}/func/sub-{subject}_task-test_run-{item}_bold', ('nii.gz', 'dicom'))

The seqinfos parameter is a list of namedtuples which serves as a grouped and
stacked record of the DICOMs passed in. Each item in seqinfo contains DICOM
metadata that can be used to isolate the series, and assign it to a conversion
key.

A dictionary of {conversion key: seqinfo} is returned.

create_key(template, outtype)

A common helper function used to create the conversion key in infotodict.

filter_files(fl)

A utility function used to filter any input files.

If this function is included, every file found will go through this filter. Any
files where this function returns True will be filtered out.

filter_dicom(dcm_data)

A utility function used to filter any DICOMs.

If this function is included, every DICOM found will go through this filter. Any
DICOMs where this function returns True will be filtered out.

infotoids(seqinfos, outdir)

Further processing on seqinfos to deduce/customize subject, session, and locator.

A dictionary of {“locator”: locator, “session”: session, “subject”: subject} is returned.

grouping string or grouping(files, dcmfilter, seqinfo)

Whenever --grouping custom (-g custom) is used, this attribute or callable
will be used to inform how to group the DICOMs into separate groups. From
original PR#359 [https://github.com/nipy/heudiconv/pull/359]:

grouping = 'AcquisitionDate'

or:

def grouping(files, dcmfilter, seqinfo):
 seqinfos = collections.OrderedDict()
 ...
 return seqinfos # ordered dict containing seqinfo objects: list of DICOMs

User Tutorials

Luckily(?), we live in an era of plentiful information. Below are some links to
other users’ tutorials covering their experience with heudiconv.

	YouTube tutorial [https://www.youtube.com/watch?v=O1kZAuR7E00] by James Kent [https://github.com/jdkent].

	Walkthrough [http://reproducibility.stanford.edu/bids-tutorial-series-part-2a/] by the Stanford Center for Reproducible Neuroscience [http://reproducibility.stanford.edu/].

	U of A Neuroimaging Core [https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/heudiconv.html] by Dianne Patterson [https://github.com/dkp].

	Sample Conversion: Coastal Coding 2019 [http://www.repronim.org/coco2019-training/presentations/heudiconv/#1].

	A joined DataLad and HeuDiConv tutorial for reproducible fMRI studies [http://www.repronim.org/coco2019-training/04-02-reproin/].

	The ReproIn conversion workflow overview [https://github.com/repronim/reproin#conversion].

	Slides [https://docs.google.com/presentation/d/14UNWQVY49c9Xc-7sj1FkoILXnt-wYjW404oqT-FtCW8/edit#slide=id.p] and
recording [https://www.youtube.com/watch?v=j2SKX37-w4c&list=PLs3CA4ShM1DUX0nTMKfoB8Z6kdrZpByLa&index=5&t=0s]
of a ReproNim Webinar on heudiconv.

Caution

Some of these tutorials may not be up to date with
the latest releases of heudiconv.

API Reference

	BIDS

	Conversion

	DICOMS

	Parsing

	Batch Queuing

	Utility

BIDS

Handle BIDS specific operations

	
exception heudiconv.bids.BIDSError

	

	
heudiconv.bids.add_rows_to_scans_keys_file(fn, newrows)

	Add new rows to file fn for scans key filename and generate accompanying json
descriptor to make BIDS validator happy.

fn: filename
newrows: extra rows to add

dict fn: [acquisition time, referring physician, random string]

	
heudiconv.bids.convert_sid_bids(subject_id)

	Strips any non-BIDS compliant characters within subject_id

subject_id : string

	sidstring

	New subject ID

	subject_idstring

	Original subject ID

	
heudiconv.bids.find_subj_ses(f_name)

	Given a path to the bids formatted filename parse out subject/session

	
heudiconv.bids.get_formatted_scans_key_row(dcm_fn)

	item

	row: list

	[ISO acquisition time, performing physician name, random string]

	
heudiconv.bids.maybe_na(val)

	Return ‘n/a’ if non-None value represented as str is not empty

Primarily for the consistent use of lower case ‘n/a’ so ‘N/A’ and ‘NA’
are also treated as ‘n/a’

	
heudiconv.bids.populate_aggregated_jsons(path)

	Aggregate across the entire BIDS dataset .json’s into top level .json’s

Top level .json files would contain only the fields which are
common to all subject[/session]/type/*_modality.json’s.

ATM aggregating only for *_task*_bold.json files. Only the task- and
OPTIONAL _acq- field is retained within the aggregated filename. The other
BIDS _key-value pairs are “aggregated over”.

	path: str

	Path to the top of the BIDS dataset

	
heudiconv.bids.populate_bids_templates(path, defaults={})

	Premake BIDS text files with templates

	
heudiconv.bids.save_scans_key(item, bids_files)

	item:
bids_files: str or list

	
heudiconv.bids.treat_age(age)

	Age might encounter ‘Y’ suffix or be a float

	
heudiconv.bids.tuneup_bids_json_files(json_files)

	Given a list of BIDS .json files, e.g.

Conversion

	
heudiconv.convert.add_taskname_to_infofile(infofiles)

	Add the “TaskName” field to json files corresponding to func images.

infofiles : list with json filenames or single filename

	
heudiconv.convert.bvals_are_zero(bval_file)

	Checks if all entries in a bvals file are zero (or 5, for Siemens files).
Returns True if that is the case, otherwise returns False

bval_file : file with the bvals

True if all are zero; False otherwise.

	
heudiconv.convert.convert(items, converter, scaninfo_suffix, custom_callable, with_prov, bids_options, outdir, min_meta, overwrite, symlink=True, prov_file=None, dcmconfig=None)

	Perform actual conversion (calls to converter etc) given info from
heuristic’s infotodict

items
symlink
converter
scaninfo_suffix
custom_callable
with_prov
is_bids
sourcedir
outdir
min_meta

None

	
heudiconv.convert.convert_dicom(item_dicoms, bids_options, prefix, outdir, tempdirs, symlink, overwrite)

	Save DICOMs as output (default is by symbolic link)

	item_dicomslist of filenames

	DICOMs to save

	bids_optionslist or None

	If not None then save to BIDS format. List may be empty
or contain bids specific options

	prefixstring

	Conversion outname

	outdirstring

	Output directory

	tempdirsTempDirs instance

	Object to handle temporary directories created
TODO: remove

	symlinkbool

	Create softlink to DICOMs - if False, create hardlink instead.

	overwritebool

	If True, allows overwriting of previous conversion

None

	
heudiconv.convert.nipype_convert(item_dicoms, prefix, with_prov, bids_options, tmpdir, dcmconfig=None)

	Converts DICOMs grouped from heuristic using Nipype’s Dcm2niix interface.

	item_dicomsList

	DICOM files to convert

	prefixString

	Heuristic output path

	with_provBool

	Store provenance information

	bids_optionsList or None

	If not None then output BIDS sidecar JSONs
List may contain bids specific options

	tmpdirDirectory

	Conversion working directory

	dcmconfigFile (optional)

	JSON file used for additional Dcm2niix configuration

	
heudiconv.convert.save_converted_files(res, item_dicoms, bids_options, outtype, prefix, outname_bids, overwrite)

	Copy converted files from tempdir to output directory.
Will rename files if necessary.

	resNode

	Nipype conversion Node with results

	item_dicoms: list of filenames

	DICOMs converted

	bidslist or None

	If not list save to BIDS
List may contain bids specific options

prefix : string

	bids_outfiles

	Converted BIDS files

	
heudiconv.convert.update_complex_name(metadata, filename, suffix)

	Insert _part-<mag|phase> entity into filename if data are from a
sequence with magnitude/phase part.

	metadatadict

	Scan metadata dictionary from BIDS sidecar file.

	filenamestr

	Incoming filename

	suffixstr

	An index used for cases where a single scan produces multiple files,
but the differences between those files are unknown.

	filenamestr

	Updated filename with rec entity added in appropriate position.

	
heudiconv.convert.update_multiecho_name(metadata, filename, echo_times)

	Insert _echo-<num> entity into filename if data are from a multi-echo
sequence.

	metadatadict

	Scan metadata dictionary from BIDS sidecar file.

	filenamestr

	Incoming filename

	echo_timeslist

	List of all echo times from scan. Used to determine the echo number
(i.e., index) if field is missing from metadata.

	filenamestr

	Updated filename with echo entity added, if appropriate.

	
heudiconv.convert.update_uncombined_name(metadata, filename, channel_names)

	Insert _ch-<num> entity into filename if data are from a sequence
with “save uncombined”.

	metadatadict

	Scan metadata dictionary from BIDS sidecar file.

	filenamestr

	Incoming filename

	channel_nameslist

	List of all channel names from scan. Used to determine the channel
number (i.e., index) if field is missing from metadata.

	filenamestr

	Updated filename with ch entity added, if appropriate.

DICOMS

	
heudiconv.dicoms.compress_dicoms(dicom_list, out_prefix, tempdirs, overwrite)

	Archives DICOMs into a tarball

Also tries to do it reproducibly, so takes the date for files
and target tarball based on the series time (within the first file)

	dicom_listlist of str

	list of dicom files

	out_prefixstr

	output path prefix, including the portion of the output file name
before .dicom.tgz suffix

	tempdirsobject

	TempDirs object to handle multiple tmpdirs

	overwritebool

	Overwrite existing tarfiles

	filenamestr

	Result tarball

	
heudiconv.dicoms.create_seqinfo(mw, series_files, series_id)

	Generate sequence info

mw: MosaicWrapper
series_files: list
series_id: str

	
heudiconv.dicoms.embed_dicom_and_nifti_metadata(dcmfiles, niftifile, infofile, bids_info)

	Embed metadata from nifti (affine etc) and dicoms into infofile (json)

niftifile should exist. Its affine’s orientation information is used while
establishing new NiftiImage out of dicom stack and together with bids_info
(if provided) is dumped into json infofile

dcmfiles
niftifile
infofile
bids_info: dict

Additional metadata to be embedded. infofile is overwritten if exists,
so here you could pass some metadata which would overload (at the first
level of the dict structure, no recursive fancy updates) what is obtained
from nifti and dicoms

	
heudiconv.dicoms.embed_metadata_from_dicoms(bids_options, item_dicoms, outname, outname_bids, prov_file, scaninfo, tempdirs, with_prov)

	Enhance sidecar information file with more information from DICOMs

bids_options
item_dicoms
outname
outname_bids
prov_file
scaninfo
tempdirs
with_prov

	
heudiconv.dicoms.get_dicom_series_time(dicom_list)

	Get time in seconds since epoch from dicom series date and time
Primarily to be used for reproducible time stamping

	
heudiconv.dicoms.group_dicoms_into_seqinfos(files, grouping, file_filter=None, dcmfilter=None, flatten=False, custom_grouping=None)

	Process list of dicoms and return seqinfo and file group
seqinfo contains per-sequence extract of fields from DICOMs which
will be later provided into heuristics to decide on filenames

	fileslist of str

	List of files to consider

	grouping{‘studyUID’, ‘accession_number’, ‘all’, ‘custom’}

	How to group DICOMs for conversion. If ‘custom’, see custom_grouping
parameter.

	file_filtercallable, optional

	Applied to each item of filenames. Should return True if file needs to be
kept, False otherwise.

	dcmfiltercallable, optional

	If called on dcm_data and returns True, it is used to set series_id

	flattenbool, optional

	Creates a flattened seqinfo with corresponding DICOM files. True when
invoked with dicom_dir_template.

	custom_grouping: str or callable, optional

	grouping key defined within heuristic. Can be a string of a
DICOM attribute, or a method that handles more complex groupings.

	seqinfolist of list

	seqinfo is a list of info entries per each sequence (some entry
there defines a key for filegrp)

	filegrpdict

	filegrp is a dictionary with files groupped per each sequence

	
heudiconv.dicoms.parse_private_csa_header(dcm_data, public_attr, private_attr, default=None)

	Parses CSA header in cases where value is not defined publicly

	dcm_datapydicom Dataset object

	DICOM metadata

	public_attrstring

	non-private DICOM attribute

	private_attrstring

	private DICOM attribute

	default (optional)

	default value if private_attr not found

	val (default: empty string)

	private attribute value or default

	
heudiconv.dicoms.validate_dicom(fl, dcmfilter)

	Parse DICOM attributes. Returns None if not valid.

Parsing

	
heudiconv.parser.find_files(regex, topdir='.', exclude=None, exclude_vcs=True, dirs=False)

	Generator to find files matching regex
Parameters
———-
regex: basestring
exclude: basestring, optional

Matches to exclude

	exclude_vcs:

	If True, excludes commonly known VCS subdirectories. If string, used
as regex to exclude those files (regex: /.(?:git|gitattributes|svn|bzr|hg)(?:/|$))

	topdir: basestring or list, optional

	Directory where to search

	dirs: bool, optional

	Either to match directories as well as files

	
heudiconv.parser.get_extracted_dicoms(fl)

	Given a list of files, possibly extract some from tarballs
For ‘classical’ heudiconv, if multiple tarballs are provided, they correspond
to different sessions, so here we would group into sessions and return
pairs sessionid, files with sessionid being None if no “sessions”
detected for that file or there was just a single tarball in the list

	
heudiconv.parser.get_study_sessions(dicom_dir_template, files_opt, heuristic, outdir, session, sids, grouping='studyUID')

	Given options from cmdline sort files or dicom seqinfos into
study_sessions which put together files for a single session of a subject
in a study
Two major possible workflows:
- if dicom_dir_template provided – doesn’t pre-load DICOMs and just

loads files pointed by each subject and possibly sessions as corresponding
to different tarballs

	if files_opt is provided, sorts all DICOMs it can find under those paths

Batch Queuing

	
heudiconv.queue.clean_args(hargs, iterarg, iteridx)

	Filters arguments for batch submission.

	hargs: list

	Command-line arguments

	iterarg: str

	Multi-argument to index (subjects OR files)

	iteridx: int

	iterarg index to submit

	cmdargslist

	Filtered arguments for batch submission

>>> from heudiconv.queue import clean_args
>>> cmd = ['heudiconv', '-d', '/some/{subject}/path',
... '-q', 'SLURM',
... '-s', 'sub-1', 'sub-2', 'sub-3', 'sub-4']
>>> clean_args(cmd, 'subjects', 0)
['heudiconv', '-d', '/some/{subject}/path', '-s', 'sub-1']

	
heudiconv.queue.queue_conversion(queue, iterarg, iterables, queue_args=None)

	Write out conversion arguments to file and submit to a job scheduler.
Parses sys.argv for heudiconv arguments.

	queue: string

	Batch scheduler to use

	iterarg: str

	Multi-argument to index (subjects OR files)

	iterables: int

	Number of iterarg arguments

	queue_args: string (optional)

	Additional queue arguments for job submission

Utility

Utility objects and functions

	
class heudiconv.utils.File(name, executable=False)

	Helper for a file entry in the create_tree/@with_tree

It allows to define additional settings for entries

	
class heudiconv.utils.SeqInfo(total_files_till_now, example_dcm_file, series_id, dcm_dir_name, series_files, unspecified, dim1, dim2, dim3, dim4, TR, TE, protocol_name, is_motion_corrected, is_derived, patient_id, study_description, referring_physician_name, series_description, sequence_name, image_type, accession_number, patient_age, patient_sex, date, series_uid, time)

	
	
TE

	Alias for field number 11

	
TR

	Alias for field number 10

	
accession_number

	Alias for field number 21

	
date

	Alias for field number 24

	
dcm_dir_name

	Alias for field number 3

	
dim1

	Alias for field number 6

	
dim2

	Alias for field number 7

	
dim3

	Alias for field number 8

	
dim4

	Alias for field number 9

	
example_dcm_file

	Alias for field number 1

	
image_type

	Alias for field number 20

	
is_derived

	Alias for field number 14

	
is_motion_corrected

	Alias for field number 13

	
patient_age

	Alias for field number 22

	
patient_id

	Alias for field number 15

	
patient_sex

	Alias for field number 23

	
protocol_name

	Alias for field number 12

	
referring_physician_name

	Alias for field number 17

	
sequence_name

	Alias for field number 19

	
series_description

	Alias for field number 18

	
series_files

	Alias for field number 4

	
series_id

	Alias for field number 2

	
series_uid

	Alias for field number 25

	
study_description

	Alias for field number 16

	
time

	Alias for field number 26

	
total_files_till_now

	Alias for field number 0

	
unspecified

	Alias for field number 5

	
class heudiconv.utils.StudySessionInfo(locator, session, subject)

	
	
locator

	Alias for field number 0

	
session

	Alias for field number 1

	
subject

	Alias for field number 2

	
class heudiconv.utils.TempDirs

	A helper to centralize handling and cleanup of dirs

	
heudiconv.utils.assure_no_file_exists(path)

	Check if file or symlink (git-annex?) exists, and if so – remove

	
heudiconv.utils.clear_temp_dicoms(item_dicoms)

	Ensures DICOM temporary directories are safely cleared

	
heudiconv.utils.create_file_if_missing(filename, content)

	Create file if missing, so we do not
override any possibly introduced changes

	
heudiconv.utils.create_tree(path, tree, archives_leading_dir=True)

	Given a list of tuples (name, load) or a dict create such a tree

if load is a tuple or a dict itself – that would create either a subtree
or an archive with that content and place it into the tree if name ends
with .tar.gz

	
heudiconv.utils.docstring_parameter(*sub)

	Borrowed from https://stackoverflow.com/a/10308363/6145776

	
heudiconv.utils.get_datetime(date, time, *, microseconds=True)

	Combine date and time from dicom to isoformat.

	datestr

	Date in YYYYMMDD format.

	timestr

	Time in either HHMMSS.ffffff format or HHMMSS format.

	microseconds: bool, optional

	Either to include microseconds in the output

	datetime_strstr

	Combined date and time in ISO format, with microseconds as
if fraction was provided in ‘time’, and ‘microseconds’ was
True.

	
heudiconv.utils.get_known_heuristic_names()

	Return a list of heuristic names present under heudiconv/heuristics

	
heudiconv.utils.get_typed_attr(obj, attr, _type, default=None)

	Typecasts an object’s named attribute. If the attribute cannot be
converted, the default value is returned instead.

obj: Object
attr: Attribute
_type: Type
default: value, optional

	
heudiconv.utils.is_readonly(path)

	Return True if it is a fully read-only file (dereferences the symlink)

	
heudiconv.utils.json_dumps(json_obj, indent=2, sort_keys=True)

	Unified (default indent and sort_keys) invocation of json.dumps

	
heudiconv.utils.json_dumps_pretty(j, indent=2, sort_keys=True)

	Given a json structure, pretty print it by colliding numeric arrays
into a line.

If resultant structure differs from original – throws exception

	
heudiconv.utils.load_heuristic(heuristic)

	Load heuristic from the file, return the module

	
heudiconv.utils.load_json(filename, retry=0)

	Load data from a json file

	filenamestr

	Filename to load data from.

	retry: int, optional

	Number of times to retry opening/loading the file in case of
failure. Code will sleep for 0.1 seconds between retries.
Could be used in code which is not sensitive to order effects
(e.g. like populating bids templates where the last one to
do it, would make sure it would be the correct/final state).

data : dict

	
heudiconv.utils.safe_copyfile(src, dest, overwrite=False)

	Copy file but blow if destination name already exists

	
heudiconv.utils.safe_movefile(src, dest, overwrite=False)

	Move file but blow if destination name already exists

	
heudiconv.utils.save_json(filename, data, indent=2, sort_keys=True, pretty=False)

	Save data to a json file

	filenamestr

	Filename to save data in.

	datadict

	Dictionary to save in json file.

indent : int, optional
sort_keys : bool, optional
pretty : bool, optional

	
heudiconv.utils.set_readonly(path, read_only=True)

	Make file read only or writeable while preserving “access levels”

So if file was not readable by others, it should remain not readable by
others.

path : str
read_only : bool, optional

If True (default) - would make it read-only. If False, would make it
writeable for levels where it is readable

	
heudiconv.utils.slim_down_info(j)

	Given an aggregated info structure, removes excessive details

Such as CSA fields, and SourceImageSequence which on Siemens files could be
huge and not providing any additional immediately usable information.
If needed, could be recovered from stored DICOMs

	
heudiconv.utils.treat_infofile(filename)

	Tune up generated .json file (slim down, pretty-print for humans).

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 heudiconv	

 	
 	
 heudiconv.bids	

 	
 	
 heudiconv.convert	

 	
 	
 heudiconv.dicoms	

 	
 	
 heudiconv.parser	

 	
 	
 heudiconv.queue	

 	
 	
 heudiconv.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	accession_number (heudiconv.utils.SeqInfo attribute)

 	add_rows_to_scans_keys_file() (in module heudiconv.bids)

 	
 	add_taskname_to_infofile() (in module heudiconv.convert)

 	assure_no_file_exists() (in module heudiconv.utils)

B

 	
 	BIDSError

 	
 	bvals_are_zero() (in module heudiconv.convert)

C

 	
 	clean_args() (in module heudiconv.queue)

 	clear_temp_dicoms() (in module heudiconv.utils)

 	compress_dicoms() (in module heudiconv.dicoms)

 	convert() (in module heudiconv.convert)

 	
 	convert_dicom() (in module heudiconv.convert)

 	convert_sid_bids() (in module heudiconv.bids)

 	create_file_if_missing() (in module heudiconv.utils)

 	create_seqinfo() (in module heudiconv.dicoms)

 	create_tree() (in module heudiconv.utils)

D

 	
 	date (heudiconv.utils.SeqInfo attribute)

 	dcm_dir_name (heudiconv.utils.SeqInfo attribute)

 	dim1 (heudiconv.utils.SeqInfo attribute)

 	
 	dim2 (heudiconv.utils.SeqInfo attribute)

 	dim3 (heudiconv.utils.SeqInfo attribute)

 	dim4 (heudiconv.utils.SeqInfo attribute)

 	docstring_parameter() (in module heudiconv.utils)

E

 	
 	embed_dicom_and_nifti_metadata() (in module heudiconv.dicoms)

 	
 	embed_metadata_from_dicoms() (in module heudiconv.dicoms)

 	example_dcm_file (heudiconv.utils.SeqInfo attribute)

F

 	
 	File (class in heudiconv.utils)

 	
 	find_files() (in module heudiconv.parser)

 	find_subj_ses() (in module heudiconv.bids)

G

 	
 	get_datetime() (in module heudiconv.utils)

 	get_dicom_series_time() (in module heudiconv.dicoms)

 	get_extracted_dicoms() (in module heudiconv.parser)

 	get_formatted_scans_key_row() (in module heudiconv.bids)

 	
 	get_known_heuristic_names() (in module heudiconv.utils)

 	get_study_sessions() (in module heudiconv.parser)

 	get_typed_attr() (in module heudiconv.utils)

 	group_dicoms_into_seqinfos() (in module heudiconv.dicoms)

H

 	
 	heudiconv.bids (module)

 	heudiconv.convert (module)

 	heudiconv.dicoms (module)

 	
 	heudiconv.parser (module)

 	heudiconv.queue (module)

 	heudiconv.utils (module)

I

 	
 	image_type (heudiconv.utils.SeqInfo attribute)

 	is_derived (heudiconv.utils.SeqInfo attribute)

 	
 	is_motion_corrected (heudiconv.utils.SeqInfo attribute)

 	is_readonly() (in module heudiconv.utils)

J

 	
 	json_dumps() (in module heudiconv.utils)

 	
 	json_dumps_pretty() (in module heudiconv.utils)

L

 	
 	load_heuristic() (in module heudiconv.utils)

 	
 	load_json() (in module heudiconv.utils)

 	locator (heudiconv.utils.StudySessionInfo attribute)

M

 	
 	maybe_na() (in module heudiconv.bids)

N

 	
 	nipype_convert() (in module heudiconv.convert)

P

 	
 	parse_private_csa_header() (in module heudiconv.dicoms)

 	patient_age (heudiconv.utils.SeqInfo attribute)

 	patient_id (heudiconv.utils.SeqInfo attribute)

 	
 	patient_sex (heudiconv.utils.SeqInfo attribute)

 	populate_aggregated_jsons() (in module heudiconv.bids)

 	populate_bids_templates() (in module heudiconv.bids)

 	protocol_name (heudiconv.utils.SeqInfo attribute)

Q

 	
 	queue_conversion() (in module heudiconv.queue)

R

 	
 	referring_physician_name (heudiconv.utils.SeqInfo attribute)

S

 	
 	safe_copyfile() (in module heudiconv.utils)

 	safe_movefile() (in module heudiconv.utils)

 	save_converted_files() (in module heudiconv.convert)

 	save_json() (in module heudiconv.utils)

 	save_scans_key() (in module heudiconv.bids)

 	SeqInfo (class in heudiconv.utils)

 	sequence_name (heudiconv.utils.SeqInfo attribute)

 	series_description (heudiconv.utils.SeqInfo attribute)

 	
 	series_files (heudiconv.utils.SeqInfo attribute)

 	series_id (heudiconv.utils.SeqInfo attribute)

 	series_uid (heudiconv.utils.SeqInfo attribute)

 	session (heudiconv.utils.StudySessionInfo attribute)

 	set_readonly() (in module heudiconv.utils)

 	slim_down_info() (in module heudiconv.utils)

 	study_description (heudiconv.utils.SeqInfo attribute)

 	StudySessionInfo (class in heudiconv.utils)

 	subject (heudiconv.utils.StudySessionInfo attribute)

T

 	
 	TE (heudiconv.utils.SeqInfo attribute)

 	TempDirs (class in heudiconv.utils)

 	time (heudiconv.utils.SeqInfo attribute)

 	total_files_till_now (heudiconv.utils.SeqInfo attribute)

 	
 	TR (heudiconv.utils.SeqInfo attribute)

 	treat_age() (in module heudiconv.bids)

 	treat_infofile() (in module heudiconv.utils)

 	tuneup_bids_json_files() (in module heudiconv.bids)

U

 	
 	unspecified (heudiconv.utils.SeqInfo attribute)

 	update_complex_name() (in module heudiconv.convert)

 	
 	update_multiecho_name() (in module heudiconv.convert)

 	update_uncombined_name() (in module heudiconv.convert)

V

 	
 	validate_dicom() (in module heudiconv.dicoms)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 HeuDiConv

 		
 Installation

 		
 Local

 		
 Docker

 		
 Singularity

 		
 Changes

 		
 Changelog

 		
 [0.10.0] - 2021-09-16

 		
 [0.9.0] - 2020-12-23

 		
 [0.8.0] - 2020-04-15

 		
 [0.7.0] - 2020-03-20

 		
 [0.6.0] - 2019-12-16

 		
 [0.5.4] - 2019-04-29

 		
 [0.5.3] - 2019-01-12

 		
 [0.5.2] - 2019-01-04

 		
 [0.5.1] - 2018-07-05

 		
 [0.5] - 2018-03-01

 		
 [0.4] - 2017-10-15

 		
 [0.3] - 2017-07-10

 		
 [0.2] - 2016-10-20

 		
 [0.1] - 2015-09-23

 		
 [Unreleased] - Date

 		
 References

 		
 Usage

 		
 CommandLine Arguments

 		
 Named Arguments

 		
 Conversion submission options

 		
 Support

 		
 Batch jobs

 		
 Heuristic

 		
 Components

 		
 infotodict(seqinfos)

 		
 create_key(template, outtype)

 		
 filter_files(fl)

 		
 filter_dicom(dcm_data)

 		
 infotoids(seqinfos, outdir)

 		
 grouping string or grouping(files, dcmfilter, seqinfo)

 		
 User Tutorials

 		
 API Reference

 		
 BIDS

 		
 Conversion

 		
 DICOMS

 		
 Parsing

 		
 Batch Queuing

 		
 Utility

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

