

    
      
          
            
  
HeuDiConv

a heuristic-centric DICOM converter

[image: Our Docker image]
 [https://hub.docker.com/r/nipy/heudiconv/tags/][image: GitHub Actions (test)]
 [https://github.com/nipy/heudiconv/actions/workflows/test.yml][image: CodeCoverage]
 [https://codecov.io/gh/nipy/heudiconv][image: Readthedocs]
 [http://heudiconv.readthedocs.io/en/latest/?badge=latest][image: Zenodo (latest)]
 [https://doi.org/10.5281/zenodo.1012598][image: Debian Unstable]
 [https://repology.org/project/heudiconv/versions][image: Gentoo (::science)]
 [https://repology.org/project/python:heudiconv/versions][image: PyPI]
 [https://repology.org/project/python:heudiconv/versions]
About

heudiconv is a flexible DICOM converter for organizing brain imaging data
into structured directory layouts.


	It allows flexible directory layouts and naming schemes through customizable heuristics implementations.


	It only converts the necessary DICOMs and ignores everything else in a directory.


	You can keep links to DICOM files in the participant layout.


	Using dcm2niix [https://github.com/rordenlab/dcm2niix/] under the hood, it’s fast.


	It can track the provenance of the conversion from DICOM to NIfTI in W3C PROV format.


	It provides assistance in converting to BIDS [http://bids.neuroimaging.io/].


	It integrates with DataLad [https://www.datalad.org/] to place converted and original data under git/git-annex
version control while automatically annotating files with sensitive information (e.g., non-defaced anatomicals, etc).




Heudiconv can be inserted into your workflow to provide automatic conversion as part of a data acquisition pipeline, as seen in the figure below:

[image: _images/environment.png]


Installation

See our installation page [https://heudiconv.readthedocs.io/en/latest/installation.html]
on heudiconv.readthedocs.io .



HOWTO 101

In a nutshell – heudiconv is given a file tree of DICOMs, and it produces a restructured file tree of NifTI files (conversion handled by dcm2niix [https://github.com/rordenlab/dcm2niix/]) with accompanying metadata files.
The input and output structure is as flexible as your data, which is accomplished by using a Python file called a heuristic that knows how to read your input structure and decides how to name the resultant files.
You can run your conversion automatically (which will produce a .heudiconv directory storing the used parameters), or generate the default parameters, edit them to customize file naming, and continue conversion via an additional invocation of heudiconv:

[image: _images/workflow.png]
heudiconv comes with existing heuristics [https://github.com/nipy/heudiconv/tree/master/heudiconv/heuristics] which can be used as is, or as examples.
For instance, the Heuristic convertall [https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/convertall.py] extracts standard metadata from all matching DICOMs.
heudiconv creates mapping files, <something>.edit.text which lets researchers simply establish their own conversion mapping.

In most use-cases of retrospective study data conversion, you would need to create your custom heuristic following the examples and the “Heuristic” section [https://heudiconv.readthedocs.io/en/latest/heuristics.html] in the documentation.
Note that ReproIn heuristic [https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin.py] is
generic and powerful enough to be adopted virtually for any study: For prospective studies, you would just need
to name your sequences following the ReproIn convention [https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin.py#L26], and for
retrospective conversions, you often would be able to create a new versatile heuristic by simply providing
remappings into ReproIn as shown in this issue (documentation is coming) [https://github.com/ReproNim/reproin/issues/18#issuecomment-834598084].

Having decided on a heuristic, you could use the command line:

heudiconv -f HEURISTIC-FILE-OR-NAME -o OUTPUT-PATH --files INPUT-PATHs





with various additional options (see heudiconv --help or
“Usage” in documentation [https://heudiconv.readthedocs.io/en/latest/usage.html]) to tune its behavior to
convert your data.

For detailed examples and guides, please check out ReproIn conversion invocation examples [https://github.com/ReproNim/reproin/#conversion]
and the user tutorials [https://heudiconv.readthedocs.io/en/latest/tutorials.html] in the documentation.



How to cite

Please use Zenodo record [https://doi.org/10.5281/zenodo.1012598] for
your specific version of HeuDiConv.  We also support gathering
all relevant citations via DueCredit [http://duecredit.org].



How to contribute

For a detailed into, see our contributing guide.

Our releases are packaged using Intuit auto, with the corresponding workflow including
Docker image preparation being found in .github/workflows/release.yml.



3-rd party heuristics


	https://github.com/courtois-neuromod/ds_prep/blob/main/mri/convert/heuristics_unf.py






Support

All bugs, concerns and enhancement requests for this software can be submitted here:
https://github.com/nipy/heudiconv/issues.

If you have a problem or would like to ask a question about how to use heudiconv,
please submit a question to NeuroStars.org [http://neurostars.org/tags/heudiconv] with a heudiconv tag.
NeuroStars.org is a platform similar to StackOverflow but dedicated to neuroinformatics.

All previous heudiconv questions are available here:
http://neurostars.org/tags/heudiconv/




Contributing to HeuDiConv


Files organization


	heudiconv/ is the main Python module where major development is happening, with
major submodules being:


	cli/ - wrappers and argument parsers bringing the HeuDiConv functionality to the command
line.


	external/ - general compatibility layers for external functions HeuDiConv depends on.


	heuristics/ - heuristic evaluators for workflows, pull requests here are particularly
welcome.






	docs/ - documentation directory.


	utils/ - helper utilities used during development, testing, and distribution of
HeuDiConv.






How to contribute

The preferred way to contribute to the HeuDiConv code base is
to fork the main repository [https://github.com/nipy/heudiconv/] on GitHub.

If you are unsure what that means, here is a set-up workflow you may wish to follow:


	Fork the project repository [https://github.com/nipy/heudiconv] on GitHub, by clicking
on the “Fork” button near the top of the page — this will create a copy of the repository
writeable by your GitHub user.


	Set up a clone of the repository on your local machine and connect it to both the “official”
and your copy of the repository on GitHub:

git clone git://github.com/nipy/heudiconv
cd heudiconv
git remote rename origin official
git remote add origin git://github.com/YOUR_GITHUB_USERNAME/heudiconv







	When you wish to start a new contribution, create a new branch:

git checkout -b topic_of_your_contribution







	When you are done making the changes you wish to contribute, record them in Git:

git add the/paths/to/files/you/modified can/be/more/than/one
git commit










	Push the changes to your copy of the code on GitHub, following which Git will
provide you with a link which you can click to initiate a pull request:

git push -u origin topic_of_your_contribution









(If any of the above seems overwhelming, you can look up the Git documentation [http://git-scm.com/documentation] on the web.)



Releases and Changelog

HeuDiConv uses the auto [https://intuit.github.io/auto/] tool to generate the changelog and automatically release the project.

auto is used in the HeuDiConv GitHub actions, which monitors the labels on the pull request.
HeuDiConv automation can add entries to the changelog, cut releases, and
push new images to dockerhub [https://hub.docker.com/r/nipy/heudiconv].

The following pull request labels are respected:



	major: Increment the major version when merged


	minot: Increment the minot version when merged


	patch: Increment the patch version when merged


	skip-release: Preserve the current version when merged


	release: Create a release when this pr is merged


	internal: Changes only affect the internal API


	documentation: Changes only affect the documentation


	tests: Add or improve existing tests


	dependencies: Update one or more dependencies version


	performance: Improve performance of an existing feature









Development environment

We support Python 3 only (>= 3.7).

Dependencies which you will need are listed in the repository.
Note that you will likely have these will already be available on your system if you used a
package manager (e.g. Debian’s apt-get, Gentoo’s emerge, or simply PIP) to install the
software.

Development work might require live access to the copy of HeuDiConv which is being developed.
If a system-wide release of HeuDiConv is already installed, or likely to be, it is best to keep
development work sandboxed inside a dedicated virtual environment.
This is best accomplished via:

cd /path/to/your/clone/of/heudiconv
mkdir -p venvs/dev
python -m venv venvs/dev
source venvs/dev/bin/activate
pip install -e .[all]







Documentation

To contribute to the documentation, we recommend building the docs
locally prior to submitting a patch.

To build the docs locally:



	From the root of the heudiconv repository, pip install -r docs/requirements.txt


	From the docs/ directory, run make html









Additional Hints

It is recommended to check that your contribution complies with the following
rules before submitting a pull request:


	All public functions (i.e. functions whose name does not start with an underscore) should have
informative docstrings with sample usage presented as doctests when appropriate.


	Docstrings are formatted in NumPy style [https://numpydoc.readthedocs.io/en/latest/format.html].


	Lines are no longer than 120 characters.


	All tests still pass:

cd /path/to/your/clone/of/heudiconv
pytest -vvs .







	New code should be accompanied by new tests.






Contents



	Installation
	Local

	Containers

	Singularity

	Singularity YODA style using ///repronim/containers





	Changes

	Tutorials
	Quickstart

	Custom Heuristics

	Reproin

	External Tutorials





	Heuristics File
	Provided Heuristics





	CLI Reference
	Named Arguments

	Conversion submission options





	Using heudiconv in a Container
	Bind mount

	Other Common Options





	API Reference
	BIDS

	Conversion

	DICOMS

	Parsing

	Batch Queuing

	Utility













            

          

      

      

    

  

    
      
          
            
  
Installation

Heudiconv is packaged and available from many different sources.


Local

Released versions of HeuDiConv are available on PyPI [https://pypi.org/project/heudiconv/]
and conda [https://github.com/conda-forge/heudiconv-feedstock#installing-heudiconv].
If installing through PyPI, eg:

pip install heudiconv[all]





Manual installation of dcm2niix [https://github.com/rordenlab/dcm2niix#install]
is required. You can also benefit from an installer/downloader helper dcm2niix package
on PyPI, so you can simply pip install dcm2niix if you are installing in user space so
subsequently it would be able to download and install dcm2niix binary.

On Debian-based systems, we recommend using NeuroDebian [http://neuro.debian.net],
which provides the heudiconv package [http://neuro.debian.net/pkgs/heudiconv.html].



Containers

Our container image releases are availe on our Docker Hub [https://hub.docker.com/r/nipy/heudiconv/tags]

If Docker [https://docs.docker.com/install/] is available on your system, you can pull the latest release:

$ docker pull nipy/heudiconv:latest





Additionally, HeuDiConv is available through the Docker image at repronim/reproin [https://hub.docker.com/r/repronim/reproin] provided by
ReproIn heuristic project [http://reproin.repronim.org], which develops the reproin heuristic.

To maintain provenance, it is recommended that you use the latest tag only when testing out heudiconv.
Otherwise, it is recommended that you use an explicit version and record that information alongside the produced data.



Singularity

If Singularity [https://www.sylabs.io/singularity/] is available on your system,
you can use it to pull and convert our Docker images! For example, to pull and
build the latest release, you can run:

$ singularity pull docker://nipy/heudiconv:latest







Singularity YODA style using ///repronim/containers

ReproNim [https://www.repronim.org/] provides a large collection of Singularity container images of popular
neuroimaging tools, e.g. all the BIDS-Apps. This collection also includes the forementioned container
images for HeuDiConv [https://github.com/ReproNim/containers/tree/master/images/nipy] and
ReproIn [https://github.com/ReproNim/containers/tree/master/images/repronim] in the Singularity image format. This collection is available as a
DataLad [https://datalad.org] dataset at ///repronim/containers [http://datasets.datalad.org/?dir=/repronim/containers]
on datasets.datalad.org [http://datasets.datalad.org] and as a GitHub repo [https://github.com/ReproNim/containers].
The HeuDiConv and ReproIn container images are named nipy-heudiconv and repronim-reproin, respectively, in this collection.
To use them, you can install the DataLad dataset and then use the datalad containers-run command to run.
For a more detailed example of using images from this collection while fulfilling
the YODA Principles [https://github.com/myyoda/poster/blob/master/ohbm2018.pdf], please check out
A typical YODA workflow [https://github.com/ReproNim/containers#a-typical-yoda-workflow] in
the documentation of this collection.

Note: With the datalad containers-run command, the images in this collection work on macOS (OSX)
as well for repronim/containers helpers automagically take care of running the Singularity containers via Docker.





            

          

      

      

    

  

    
      
          
            
  
Changes

# v1.1.1 (Thu May 02 2024)

#### 🐛 Bug Fix

- Handle cases where dates/times in DICOM are empty strings, not Nones (e.g. after some anonymization) [#756](https://github.com/nipy/heudiconv/pull/756) ([@jennan](https://github.com/jennan) [@yarikoptic](https://github.com/yarikoptic))

#### Authors: 2

- Maxime Rio ([@jennan](https://github.com/jennan))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v1.1.0 (Wed Feb 28 2024)

#### 🚀 Enhancement

- Add support for a  custom seqinfo to extract from DICOMs any additional metadata desired for a heuristic [#581](https://github.com/nipy/heudiconv/pull/581) ([@yarikoptic](https://github.com/yarikoptic) [@bpinsard](https://github.com/bpinsard))
- codespell: ignore "build" folder which might be on the system [#581](https://github.com/nipy/heudiconv/pull/581) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 2

- Basile ([@bpinsard](https://github.com/bpinsard))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v1.0.2 (Mon Feb 26 2024)

#### 🐛 Bug Fix

- properly remove GE multiecho bvals/bvecs [#728](https://github.com/nipy/heudiconv/pull/728) ([@bpinsard](https://github.com/bpinsard))
- datalad sensitive marking fixes [#739](https://github.com/nipy/heudiconv/pull/739) ([@bpinsard](https://github.com/bpinsard))
- Reject "Missing images" in sensor-dicoms [#735](https://github.com/nipy/heudiconv/pull/735) ([@chaselgrove](https://github.com/chaselgrove))

#### ⚠️ Pushed to `master`

- Adding workflow figure ([@TheChymera](https://github.com/TheChymera))
- Added figures to master branch ([@TheChymera](https://github.com/TheChymera))

#### 🏠 Internal

- auto 11.0.5 is needed to avoid hitting some "Error: fatal: ... not an integer" bug [#746](https://github.com/nipy/heudiconv/pull/746) ([@yarikoptic](https://github.com/yarikoptic))
- Fix - auto is in ~/, not in the PATH [#745](https://github.com/nipy/heudiconv/pull/745) ([@yarikoptic](https://github.com/yarikoptic))
- Make it possible to review auto version -v output during release + adjust that workflow step description [#743](https://github.com/nipy/heudiconv/pull/743) ([@yarikoptic](https://github.com/yarikoptic))
- [gh-actions](deps): Bump codecov/codecov-action from 3 to 4 [#736](https://github.com/nipy/heudiconv/pull/736) ([@dependabot[bot]](https://github.com/dependabot[bot]) [@yarikoptic](https://github.com/yarikoptic))
- [gh-actions](deps): Bump actions/setup-python from 4 to 5 [#723](https://github.com/nipy/heudiconv/pull/723) ([@dependabot[bot]](https://github.com/dependabot[bot]))

#### 📝 Documentation

- Adjust wording on heuristics page -- do not claim creating some skeleton [#741](https://github.com/nipy/heudiconv/pull/741) ([@yarikoptic](https://github.com/yarikoptic))
- Document how to release and add changelog entries [#737](https://github.com/nipy/heudiconv/pull/737) ([@asmacdo](https://github.com/asmacdo) [@yarikoptic](https://github.com/yarikoptic))
- Add dianne tutorials [#734](https://github.com/nipy/heudiconv/pull/734) ([@asmacdo](https://github.com/asmacdo) [@yarikoptic](https://github.com/yarikoptic))
- Add documentation building instructions [#730](https://github.com/nipy/heudiconv/pull/730) ([@asmacdo](https://github.com/asmacdo))
- Allowing RTD to access images under the same path as README [#734](https://github.com/nipy/heudiconv/pull/734) ([@TheChymera](https://github.com/TheChymera))
- Using environment figure in about section [#730](https://github.com/nipy/heudiconv/pull/730) ([@TheChymera](https://github.com/TheChymera))
- Make README more concrete [#724](https://github.com/nipy/heudiconv/pull/724) ([@asmacdo](https://github.com/asmacdo))

#### Authors: 6

- [@chaselgrove](https://github.com/chaselgrove)
- [@dependabot[bot]](https://github.com/dependabot[bot])
- Austin Macdonald ([@asmacdo](https://github.com/asmacdo))
- Basile ([@bpinsard](https://github.com/bpinsard))
- Horea Christian ([@TheChymera](https://github.com/TheChymera))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v1.0.1 (Fri Dec 08 2023)

#### 🐛 Bug Fix

- Drop Python 3.7 support [#722](https://github.com/nipy/heudiconv/pull/722) ([@yarikoptic](https://github.com/yarikoptic))
- ReproIn: give an informative assertion message when multiple values are found [#718](https://github.com/nipy/heudiconv/pull/718) ([@yarikoptic](https://github.com/yarikoptic))
- Convert assertion into a warning that we would not use dicom dir template option [#709](https://github.com/nipy/heudiconv/pull/709) ([@yarikoptic](https://github.com/yarikoptic))
- Do not demand --files for all commands, even those which do not care about it (like populate-intended-for) [#708](https://github.com/nipy/heudiconv/pull/708) ([@yarikoptic](https://github.com/yarikoptic))

#### ⚠️ Pushed to `master`

- Add script to sensor dicoms -- for the error where dcm2niix might or might not fail but issues an Error ([@yarikoptic](https://github.com/yarikoptic))

#### 🏠 Internal

- Ran pre-commit on everything, black decided to adjust some formatting [#721](https://github.com/nipy/heudiconv/pull/721) ([@yarikoptic](https://github.com/yarikoptic))
- Make sensor-dicoms use gnu-getopt if present (on OSX) [#721](https://github.com/nipy/heudiconv/pull/721) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 1

- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v1.0.0 (Wed Sep 20 2023)

#### 💥 Breaking Change

- [gh-actions](deps): Bump actions/checkout from 3 to 4 [#703](https://github.com/nipy/heudiconv/pull/703) ([@dependabot[bot]](https://github.com/dependabot[bot]))

#### 🚀 Enhancement

- Fix inconsistent behavior of existing session when using -d compared to --files option: raise an AssertionError instead of just a warning [#682](https://github.com/nipy/heudiconv/pull/682) ([@neurorepro](https://github.com/neurorepro))

#### 🐛 Bug Fix

- Various tiny enhancements flake etc demanded [#702](https://github.com/nipy/heudiconv/pull/702) ([@yarikoptic](https://github.com/yarikoptic))
- Boost claimed BIDS version to 1.8.0 from 1.4.1 [#699](https://github.com/nipy/heudiconv/pull/699) ([@yarikoptic](https://github.com/yarikoptic))
- Point to Courtois-neuromod heuristic [#702](https://github.com/nipy/heudiconv/pull/702) ([@yarikoptic](https://github.com/yarikoptic))

#### 🏠 Internal

- Add codespell to lint tox env [#706](https://github.com/nipy/heudiconv/pull/706) ([@yarikoptic](https://github.com/yarikoptic))
- test-compare-two-versions.sh: also ignore differences in HeudiconvVersion field in jsons since we have it there now [#685](https://github.com/nipy/heudiconv/pull/685) ([@yarikoptic](https://github.com/yarikoptic))

#### 📝 Documentation

- Add description of placeholders which could be used in the produced templates [#681](https://github.com/nipy/heudiconv/pull/681) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 3

- [@dependabot[bot]](https://github.com/dependabot[bot])
- Michael ([@neurorepro](https://github.com/neurorepro))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.13.1 (Tue May 23 2023)

#### 🐛 Bug Fix

- Make .subsecond optional in BIDS/DICOM datetime entries [#675](https://github.com/nipy/heudiconv/pull/675) ([@yarikoptic](https://github.com/yarikoptic))

#### 🏠 Internal

- [gh-actions](deps): Bump codespell-project/actions-codespell from 1 to 2 [#677](https://github.com/nipy/heudiconv/pull/677) ([@dependabot[bot]](https://github.com/dependabot[bot]))
- Replace (no longer used) Travis badge with GitHub action one (for test) [#677](https://github.com/nipy/heudiconv/pull/677) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 2

- [@dependabot[bot]](https://github.com/dependabot[bot])
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.13.0 (Mon May 08 2023)

#### 🚀 Enhancement

- Add type annotations [#656](https://github.com/nipy/heudiconv/pull/656) ([@jwodder](https://github.com/jwodder) [@yarikoptic](https://github.com/yarikoptic))
- ENH: Support extracting DICOMs from ZIP files (and possibly other archives) by switching to use shutil.unpack_archive instead of tarfile module functionality [#471](https://github.com/nipy/heudiconv/pull/471) ([@HippocampusGirl](https://github.com/HippocampusGirl) [@psadil](https://github.com/psadil))
- Allow filling of acq_time when AcquisitionDate AcquisitionTime missing [#614](https://github.com/nipy/heudiconv/pull/614) ([@psadil](https://github.com/psadil))

#### 🐛 Bug Fix

- BF(?): make _setter images be taken as scouts - only DICOMs are saved [#570](https://github.com/nipy/heudiconv/pull/570) ([@yarikoptic](https://github.com/yarikoptic))
- Adjust .mailmap to account for mapping various folks with multiple emails so that git shortlog -sn -e provides entries without duplicates [#570](https://github.com/nipy/heudiconv/pull/570) ([@yarikoptic](https://github.com/yarikoptic))
- Make an `embed_dicom_and_nifti_metadata()` annotation work on Python 3.7 [#673](https://github.com/nipy/heudiconv/pull/673) ([@jwodder](https://github.com/jwodder))
- Merge branch 'feature_dicom_compresslevel' [#673](https://github.com/nipy/heudiconv/pull/673) ([@yarikoptic](https://github.com/yarikoptic))
- Update heudiconv/dicoms.py [#669](https://github.com/nipy/heudiconv/pull/669) ([@octomike](https://github.com/octomike))
- Don't call `logging.basicConfig()` in `__init__.py` [#659](https://github.com/nipy/heudiconv/pull/659) ([@jwodder](https://github.com/jwodder))

#### ⚠️ Pushed to `master`

- Mailmapping more contributors ([@yarikoptic](https://github.com/yarikoptic))
- Adjust comment and remove trailing space flipping linting ([@yarikoptic](https://github.com/yarikoptic))

#### 🏠 Internal

- Declare `custom_grouping` return type instead of casting [#671](https://github.com/nipy/heudiconv/pull/671) ([@jwodder](https://github.com/jwodder))
- Use `pydicom.dcmread()` instead of `pydicom.read_file()` [#668](https://github.com/nipy/heudiconv/pull/668) ([@jwodder](https://github.com/jwodder))
- Add `sample_nifti.json` to `.gitignore` [#663](https://github.com/nipy/heudiconv/pull/663) ([@jwodder](https://github.com/jwodder))
- Write command arguments as lists of strings instead of splitting strings on whitespace [#664](https://github.com/nipy/heudiconv/pull/664) ([@jwodder](https://github.com/jwodder))
- Add & apply pre-commit and lint job [#658](https://github.com/nipy/heudiconv/pull/658) ([@jwodder](https://github.com/jwodder))
- Fix some strings with \ (make them raw or double-\), improve pytest config: move to tox.ini, make unknown warnings into errors [#660](https://github.com/nipy/heudiconv/pull/660) ([@jwodder](https://github.com/jwodder))
- Replace py.path with pathlib [#654](https://github.com/nipy/heudiconv/pull/654) ([@jwodder](https://github.com/jwodder))

#### 🧪 Tests

- Make `test_private_csa_header` test write to temp dir [#666](https://github.com/nipy/heudiconv/pull/666) ([@jwodder](https://github.com/jwodder))

#### 🔩 Dependency Updates

- Replace third-party `mock` library with stdlib's `unittest.mock` [#661](https://github.com/nipy/heudiconv/pull/661) ([@jwodder](https://github.com/jwodder))
- Remove kludgy support for older versions of pydicom and dcmstack [#662](https://github.com/nipy/heudiconv/pull/662) ([@jwodder](https://github.com/jwodder))
- Remove use of `six` [#655](https://github.com/nipy/heudiconv/pull/655) ([@jwodder](https://github.com/jwodder))

#### Authors: 5

- John T. Wodder II ([@jwodder](https://github.com/jwodder))
- Lea Waller ([@HippocampusGirl](https://github.com/HippocampusGirl))
- Michael ([@octomike](https://github.com/octomike))
- Patrick Sadil ([@psadil](https://github.com/psadil))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.12.2 (Tue Mar 14 2023)

#### 🏠 Internal

- [DATALAD RUNCMD] produce updated dockerfile [#652](https://github.com/nipy/heudiconv/pull/652) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 1

- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.12.1 (Tue Mar 14 2023)

#### 🐛 Bug Fix

- Re-add explicit instructions to install dcm2niix "manually" and remove it from install_requires [#651](https://github.com/nipy/heudiconv/pull/651) ([@yarikoptic](https://github.com/yarikoptic))

#### 📝 Documentation

- Contributing guide. [#641](https://github.com/nipy/heudiconv/pull/641) ([@TheChymera](https://github.com/TheChymera))
- Reword and correct punctuation on installation.rst [#643](https://github.com/nipy/heudiconv/pull/643) ([@yarikoptic](https://github.com/yarikoptic) [@candleindark](https://github.com/candleindark))

#### Authors: 3

- Horea Christian ([@TheChymera](https://github.com/TheChymera))
- Isaac To ([@candleindark](https://github.com/candleindark))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.12.0 (Tue Feb 21 2023)

#### 🚀 Enhancement

- strip non-alphanumeric from session ids too [#647](https://github.com/nipy/heudiconv/pull/647) ([@keithcallenberg](https://github.com/keithcallenberg) [@yarikoptic](https://github.com/yarikoptic))

#### 🐛 Bug Fix

- Docker images: tag also as "unstable", strip "v" prefix, and avoid building in non-release workflow for releases. [#642](https://github.com/nipy/heudiconv/pull/642) ([@yarikoptic](https://github.com/yarikoptic))
- add install link to README [#640](https://github.com/nipy/heudiconv/pull/640) ([@asmacdo](https://github.com/asmacdo))
- Setting git author and email in test environment [#631](https://github.com/nipy/heudiconv/pull/631) ([@TheChymera](https://github.com/TheChymera))
- Duecredit dcm2niix [#622](https://github.com/nipy/heudiconv/pull/622) ([@yarikoptic](https://github.com/yarikoptic))
- Do not issue warning if cannot parse _task entity [#621](https://github.com/nipy/heudiconv/pull/621) ([@yarikoptic](https://github.com/yarikoptic))
- Provide codespell config and workflow [#619](https://github.com/nipy/heudiconv/pull/619) ([@yarikoptic](https://github.com/yarikoptic))
- BF: Use .get in group_dicoms_into_seqinfos to not puke if SeriesDescription is missing [#622](https://github.com/nipy/heudiconv/pull/622) ([@yarikoptic](https://github.com/yarikoptic))
- DOC: do provide short version for sphinx [#609](https://github.com/nipy/heudiconv/pull/609) ([@yarikoptic](https://github.com/yarikoptic))

#### ⚠️ Pushed to `master`

- DOC: add clarification on where docs/requirements.txt should be "installed" from ([@yarikoptic](https://github.com/yarikoptic))
- fix minor typo ([@yarikoptic](https://github.com/yarikoptic))
- DOC: fixed the comment. Original was copy/pasted from DataLad ([@yarikoptic](https://github.com/yarikoptic))

#### 🏠 Internal

- dcm2niix explicitly noted as a (PyPI) dependency and removed from being installed via apt-get etc [#628](https://github.com/nipy/heudiconv/pull/628) ([@TheChymera](https://github.com/TheChymera) [@yarikoptic](https://github.com/yarikoptic))

#### 📝 Documentation

- Reword number of intended ideas in README.rst [#639](https://github.com/nipy/heudiconv/pull/639) ([@candleindark](https://github.com/candleindark))
- Add a bash anon-cmd to be used to incrementally anonymize sids [#615](https://github.com/nipy/heudiconv/pull/615) ([@yarikoptic](https://github.com/yarikoptic))
- Reword and correct punctuation on usage.rst [#644](https://github.com/nipy/heudiconv/pull/644) ([@candleindark](https://github.com/candleindark) [@yarikoptic](https://github.com/yarikoptic))
- Clarify the infotodict function [#645](https://github.com/nipy/heudiconv/pull/645) ([@yarikoptic](https://github.com/yarikoptic))
- Added distribution badges [#632](https://github.com/nipy/heudiconv/pull/632) ([@TheChymera](https://github.com/TheChymera))
- Capitalize sentences and end sentences with period [#629](https://github.com/nipy/heudiconv/pull/629) ([@candleindark](https://github.com/candleindark))
- Tune up .mailmap to harmonize Pablo, Dae and Mathias [#629](https://github.com/nipy/heudiconv/pull/629) ([@yarikoptic](https://github.com/yarikoptic))
- Add HOWTO 101 section, with references to ReproIn to README.rst [#623](https://github.com/nipy/heudiconv/pull/623) ([@yarikoptic](https://github.com/yarikoptic))
- minor fix -- Fix use of code:: directive [#623](https://github.com/nipy/heudiconv/pull/623) ([@yarikoptic](https://github.com/yarikoptic))

#### 🧪 Tests

- Add 3.11 to be tested etc [#635](https://github.com/nipy/heudiconv/pull/635) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 5

- Austin Macdonald ([@asmacdo](https://github.com/asmacdo))
- Horea Christian ([@TheChymera](https://github.com/TheChymera))
- Isaac To ([@candleindark](https://github.com/candleindark))
- Keith Callenberg ([@keithcallenberg](https://github.com/keithcallenberg))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.11.6 (Thu Nov 03 2022)

#### 🏠 Internal

- Delete .dockerignore [#607](https://github.com/nipy/heudiconv/pull/607) ([@jwodder](https://github.com/jwodder))

#### 📝 Documentation

- DOC: Various fixes to make RTD build the docs again [#608](https://github.com/nipy/heudiconv/pull/608) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 2

- John T. Wodder II ([@jwodder](https://github.com/jwodder))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.11.5 (Thu Nov 03 2022)

#### 🐛 Bug Fix

- Fix certificate issue as indicated in #595 [#597](https://github.com/nipy/heudiconv/pull/597) ([@neurorepro](https://github.com/neurorepro))
- BF docker build: use python3.9 (not 3.7 which gets upgraded to 3.9) and newer dcm2niix [#596](https://github.com/nipy/heudiconv/pull/596) ([@yarikoptic](https://github.com/yarikoptic))
- Fixup miniconda spec for neurodocker so it produces dockerfile now [#596](https://github.com/nipy/heudiconv/pull/596) ([@yarikoptic](https://github.com/yarikoptic))

#### 🏠 Internal

- Update GitHub Actions action versions [#601](https://github.com/nipy/heudiconv/pull/601) ([@jwodder](https://github.com/jwodder))
- Set action step outputs via $GITHUB_OUTPUT [#600](https://github.com/nipy/heudiconv/pull/600) ([@jwodder](https://github.com/jwodder))

#### 📝 Documentation

- DOC: codespell fix a few typos in code comments [#605](https://github.com/nipy/heudiconv/pull/605) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 3

- John T. Wodder II ([@jwodder](https://github.com/jwodder))
- Michael ([@neurorepro](https://github.com/neurorepro))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.11.4 (Thu Sep 29 2022)

#### 🐛 Bug Fix

- install dcmstack straight from github until it is released [#593](https://github.com/nipy/heudiconv/pull/593) ([@yarikoptic](https://github.com/yarikoptic))
- DOC: provide rudimentary How to contribute section in README.rst ([@yarikoptic](https://github.com/yarikoptic))

#### ⚠️ Pushed to `master`

- Check out a full clone when testing ([@jwodder](https://github.com/jwodder))
- Convert Travis workflow to GitHub Actions ([@jwodder](https://github.com/jwodder))
- BF(docker): replace old -tipsy with -y -all for conda clean as neurodocker does now ([@yarikoptic](https://github.com/yarikoptic))
- adjusted script for neurodocker although it does not work ([@yarikoptic](https://github.com/yarikoptic))

#### 🏠 Internal

- 0.9 of dcmstack was released, no need for github version [#594](https://github.com/nipy/heudiconv/pull/594) ([@yarikoptic](https://github.com/yarikoptic))
- Minor face-lifts to ReproIn: align doc and code better to BIDS terms, address deprecation warnings etc [#569](https://github.com/nipy/heudiconv/pull/569) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 2

- John T. Wodder II ([@jwodder](https://github.com/jwodder))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.11.3 (Thu May 12 2022)

#### 🏠 Internal

- BF: add recently tests data missing from distribution [#567](https://github.com/nipy/heudiconv/pull/567) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 1

- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.11.2 (Thu May 12 2022)

#### 🏠 Internal

- Make versioningit write version to file; make setup.py read version as fallback [#566](https://github.com/nipy/heudiconv/pull/566) ([@jwodder](https://github.com/jwodder))
- BF: add fetch-depth: 0 to get all tags into docker builds of master [#566](https://github.com/nipy/heudiconv/pull/566) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 2

- John T. Wodder II ([@jwodder](https://github.com/jwodder))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.11.1 (Tue May 10 2022)

#### 🏠 Internal

- Remove .git/ from .dockerignore so that versioning works while building docker image [#564](https://github.com/nipy/heudiconv/pull/564) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 1

- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# v0.11.0 (Tue May 10 2022)

#### 🚀 Enhancement

- RF: drop Python 3.6 (EOLed), fix dcm2niix version in neurodocker script [#555](https://github.com/nipy/heudiconv/pull/555) ([@yarikoptic](https://github.com/yarikoptic))
- ENH: Adds populate_intended_for for fmaps [#482](https://github.com/nipy/heudiconv/pull/482) ([@pvelasco](https://github.com/pvelasco) [@yarikoptic](https://github.com/yarikoptic) bids@dbic.dartmouth.edu [@neurorepro](https://github.com/neurorepro))

#### 🐛 Bug Fix

- bids_ME heuristic: add test for the dataset that raised #541, add support for MEGRE [#547](https://github.com/nipy/heudiconv/pull/547) ([@pvelasco](https://github.com/pvelasco) [@yarikoptic](https://github.com/yarikoptic))
- reproin heuristic: specify POPULATE_INTENDED_FOR_OPTS [#546](https://github.com/nipy/heudiconv/pull/546) ([@yarikoptic](https://github.com/yarikoptic))
- FIX: Convert sets to lists for filename updaters [#461](https://github.com/nipy/heudiconv/pull/461) ([@tsalo](https://github.com/tsalo))
- Added new infofilestyle compatible with BIDS [#12](https://github.com/nipy/heudiconv/pull/12) ([@chrisgorgo](https://github.com/chrisgorgo))
- try a simple fix for wrongly ordered files in tar file [#535](https://github.com/nipy/heudiconv/pull/535) ([@bpinsard](https://github.com/bpinsard))
- BF: Fix the order of the 'echo' entity in the filename [#542](https://github.com/nipy/heudiconv/pull/542) ([@pvelasco](https://github.com/pvelasco))
- ENH: add HeudiconvVersion to sidecar .json files [#529](https://github.com/nipy/heudiconv/pull/529) ([@yarikoptic](https://github.com/yarikoptic))
- BF (TST): make anonymize_script actually output anything and map deterministically [#511](https://github.com/nipy/heudiconv/pull/511) ([@yarikoptic](https://github.com/yarikoptic))
- Rename DICOMCONVERT_README.md to README.md [#4](https://github.com/nipy/heudiconv/pull/4) ([@satra](https://github.com/satra))

#### ⚠️ Pushed to `master`

- Dockerfile - use bullseye for the base and fresh dcm2niix ([@yarikoptic](https://github.com/yarikoptic))

#### 🏠 Internal

- Run codespell on some obvious typos [#563](https://github.com/nipy/heudiconv/pull/563) ([@yarikoptic](https://github.com/yarikoptic))
- Set up auto [#558](https://github.com/nipy/heudiconv/pull/558) ([@jwodder](https://github.com/jwodder) [@yarikoptic](https://github.com/yarikoptic))

#### 🧪 Tests

- BF(TST): use caplog to control logging level, use python3 in shebang [#553](https://github.com/nipy/heudiconv/pull/553) ([@yarikoptic](https://github.com/yarikoptic))
- BF(TST): use caplog instead of capfd for testing if we log a warning [#534](https://github.com/nipy/heudiconv/pull/534) ([@yarikoptic](https://github.com/yarikoptic))
- Travis - Use bionic for the base [#533](https://github.com/nipy/heudiconv/pull/533) ([@yarikoptic](https://github.com/yarikoptic))

#### Authors: 9

- Basile ([@bpinsard](https://github.com/bpinsard))
- Chris Gorgolewski ([@chrisgorgo](https://github.com/chrisgorgo))
- DBIC BIDS Team (bids@dbic.dartmouth.edu)
- John T. Wodder II ([@jwodder](https://github.com/jwodder))
- Michael ([@neurorepro](https://github.com/neurorepro))
- Pablo Velasco ([@pvelasco](https://github.com/pvelasco))
- Satrajit Ghosh ([@satra](https://github.com/satra))
- Taylor Salo ([@tsalo](https://github.com/tsalo))
- Yaroslav Halchenko ([@yarikoptic](https://github.com/yarikoptic))

---

# [0.10.0] - 2021-09-16

Various improvements and compatibility/support (dcm2niix, datalad) changes.

## Added

- Add "AcquisitionTime" to the seqinfo ([#487][])
- Add support for saving the Phoenix Report in the sourcedata folder ([#489][])

## Changed

- Python 3.5 EOLed, supported (tested) versions now: 3.6 - 3.9
- In reprorin heuristic, allow for having multiple accessions since now there is
  `-g all` grouping ([#508][])
- For BIDS, produce a singular `scans.json` at the top level, and not one per
  sub/ses (generates too many identical files) ([#507][])


## Fixed

- Compatibility with DataLad 0.15.0. Minimal version is 0.13.0 now.
- Try to open top level BIDS .json files a number of times for adjustment,
  so in the case of competition across parallel processes, they just end up
  with the last one "winning over" ([#523][])
- Don't fail if etelemetry.get_project returns None ([#501][])
- Consistently use `n/a` for age/sex, also handle ?M for months ([#500][])
- To avoid crashing on unrelated derivatives files etc, make `find_files` to
  take list of topdirs (excluding `derivatives/` etc),
  and look for _bold only under sub-* directories ([#496][])
- Ensure bvec/bval files are only created for dwi output ([#491][])

## Removed

- In reproin heuristic, old hardcoded sequence renamings and filters ([#508][])


# [0.9.0] - 2020-12-23

Various improvements and compatibility/support (dcm2niix, datalad,
duecredit) changes.  Major change is placement of output files to the
target output directory during conversion.

## Added

- #454 zenodo referencing in README.rst and support for ducredit for
  heudiconv and reproin heuristic
- #445 more tutorial references in README.md

## Changed

- [#485][] placed files during conversion right away into the target
  directory (with a `_heudiconv???` suffix, renamed into ultimate target
  name later on), which avoids hitting file size limits of /tmp ([#481][]) and
  helped to avoid a regression in dcm2nixx 1.0.20201102
- [#477][] replaced `rec-<magnitude|phase>` with `part-<mag|phase>` now
  hat BIDSsupports the part entity
- [#473][] made default for CogAtlasID to be a TODO URL
- [#459][] made AcquisitionTime used for acq_time scans file field
- [#451][] retained sub-second resolution in scans files
- [#442][] refactored code so there is now heudiconv.main.workflow for
  more convenient use as a Python module

## Fixed

- minimal version of nipype set to 1.2.3 to guarantee correct handling
  of DWI files ([#480][])
- `heudiconvDCM*` temporary directories are removed now ([#462][])
- compatibility with DataLad 0.13 ([#464][])

## Removed

- #443 pathlib as a dependency (we are Python3 only now)


# [0.8.0] - 2020-04-15

## Enhancements

- Centralized saving of .json files.  Indentation of some files could
  change now from previous versions where it could have used `3`
  spaces. Now indentation should be consistently `2` for .json files
  we produce/modify ([#436][]) (note: dcm2niix uses tabs for indentation)
- ReproIn heuristic: support SBRef and phase data ([#387][])
- Set the "TaskName" field in .json sidecar files for multi-echo data
  ([#420][])
- Provide an informative exception if command needs heuristic to be
  specified ([#437][])

## Refactored

- `embed_nifti` was refactored into `embed_dicom_and_nifti_metadata`
  which would no longer create `.nii` file if it does not exist
  already ([#432][])

## Fixed

- Skip datalad-based tests if no datalad available ([#430][])
- Search heuristic file path first so we do not pick up a python
  module if name conflicts ([#434][])

# [0.7.0] - 2020-03-20

## Removed

- Python 2 support/testing

## Enhancement

- `-g` option obtained two new modes: `all` and `custom`. In case of `all`,
  all provided DICOMs will be treated as coming from a single scanning session.
  `custom` instructs to use `.grouping` value (could be a DICOM attribute or
  a callable)provided by the heuristic ([#359][]).
- Stop before reading pixels data while gathering metadata from DICOMs ([#404][])
- reproin heuristic:
  - In addition to original "md5sum of the study_description" `protocols2fix`
    could now have (and applied after md5sum matching ones)
    1). a regular expression searched in study_description,
    2). an empty string as "catch all".
    This features could be used to easily provide remapping into reproin
    naming (documentation is to come to http://github.com/ReproNim/reproin)
    ([#425][])

## Fixed

- Use nan, not None for absent echo value in sorting
- reproin heuristic: case seqinfos into a list to be able to modify from
  overloaded heuristic ([#419][])
- No spurious errors from the logger upon a warning about `etelemetry`
  absence ([#407][])

# [0.6.0] - 2019-12-16

This is largely a bug fix.  Metadata and order of `_key-value` fields in BIDS
could change from the result of converting using previous versions, thus minor
version boost.
14 people contributed to this release -- thanks
[everyone](https://github.com/nipy/heudiconv/graphs/contributors)!

## Enhancement

- Use [etelemetry](https://pypi.org/project/etelemetry) to inform about most
  recent available version of heudiconv. Please set `NO_ET` environment variable
  if you want to disable it ([#369][])
- BIDS:
  - `--bids` flag became an option. It can (optionally) accept `notop` value
    to avoid creation of top level files (`CHANGES`, `dataset_description.json`,
    etc) as a workaround during parallel execution to avoid race conditions etc.
    ([#344][])
  - Generate basic `.json` files with descriptions of the fields for
    `participants.tsv` and `_scans.tsv` files ([#376][])
  - Use `filelock` while writing top level files. Use
    `HEUDICONV_FILELOCK_TIMEOUT` environment to change the default timeout value
    ([#348][])
  - `_PDT2` was added as a suffix for multi-echo (really "multi-modal")
    sequences ([#345][])
- Calls to `dcm2niix` would include full output path to make it easier to
  discern in the logs what file it is working on ([#351][])
- With recent [datalad]() (>= 0.10), created DataLad dataset will use
  `--fake-dates` functionality of DataLad to not leak data conversion dates,
  which might be close to actual data acquisition/patient visit ([#352][])
- Support multi-echo EPI `_phase` data ([#373][] fixes [#368][])
- Log location of a bad .json file to ease troubleshooting ([#379][])
- Add basic pypi classifiers for the package ([#380][])

## Fixed
- Sorting `_scans.tsv` files lacking valid dates field should not cause a crash
  ([#337][])
- Multi-echo files detection based number of echos ([#339][])
- BIDS
  - Use `EchoTimes` from the associated multi-echo files if `EchoNumber` tag is
    missing ([#366][] fixes [#347][])
  - Tolerate empty ContentTime and/or ContentDate in DICOMs ([#372][]) and place
    "n/a" if value is missing ([#390][])
  - Do not crash and store original .json file is "JSON pretification" fails
    ([#342][])
- ReproIn heuristic
  - tolerate WIP prefix on Philips scanners ([#343][])
  - allow for use of `(...)` instead of `{...}` since `{}` are not allowed
    ([#343][])
  - Support pipolar fieldmaps by providing them with `_epi` not `_magnitude`.
    "Loose" BIDS `_key-value` pairs might come now after `_dir-` even if they
    came first before ([#358][] fixes [#357][])
- All heuristics saved under `.heudiconv/` under `heuristic.py` name, to avoid
  discrepancy during reconversion ([#354][] fixes [#353][])
- Do not crash (with TypeError) while trying to sort absent file list ([#360][])
- heudiconv requires nipype >= 1.0.0 ([#364][]) and blacklists `1.2.[12]` ([#375][])

# [0.5.4] - 2019-04-29

This release includes fixes to BIDS multi-echo conversions, the
re-implementation of queuing support (currently just SLURM), as well as
some bugfixes.

Starting today, we will (finally) push versioned releases to DockerHub.
Finally, to more accurately reflect on-going development, the `latest`
tag has been renamed to `unstable`.

## Added
- Readthedocs documentation ([#327][])

## Changed
- Update Docker dcm2niix to v.1.0.20190410 ([#334][])
- Allow usage of `--files` with basic heuristics. This requires
  use of `--subject` flag, and is limited to one subject. ([#293][])

## Deprecated

## Fixed
- Improve support for multiple `--queue-args` ([#328][])
- Fixed an issue where generated BIDS sidecar files were missing additional
  information - treating all conversions as if the `--minmeta` flag was
  used ([#306][])
- Re-enable SLURM queuing support ([#304][])
- BIDS multi-echo support for EPI + T1 images ([#293][])
- Correctly handle the case when `outtype` of heuristic has "dicom"
  before '.nii.gz'. Previously would have lead to absent additional metadata
  extraction etc ([#310][])

## Removed
- `--sbargs` argument was renamed to `--queue-args` ([#304][])

## Security


# [0.5.3] - 2019-01-12

Minor hot bugfix release

## Fixed
- Do not shorten spaces in the dates while pretty printing .json

# [0.5.2] - 2019-01-04

A variety of bugfixes

## Changed
- Reproin heuristic: `__dup` indices would now be assigned incrementally
  individually per each sequence, so there is a chance to properly treat
  associate for multi-file (e.g. `fmap`) sequences
- Reproin heuristic: also split StudyDescription by space not only by ^
- `tests/` moved under `heudiconv/tests` to ease maintenance and facilitate
  testing of an installed heudiconv
- Protocol name will also be accessed from private Siemens
  csa.tProtocolName header field if not present in public one
- nipype>=0.12.0 is required now

## Fixed
- Multiple files produced by dcm2niix are first sorted to guarantee
  correct order e.g. of magnitude files in fieldmaps, which otherwise
  resulted in incorrect according to BIDS ordering of them
- Aggregated top level .json files now would contain only the fields
  with the same values from all scanned files. In prior versions,
  those files were not regenerated after an initial conversion
- Unicode handling in anonimization scripts

# [0.5.1] - 2018-07-05
Bugfix release

## Added
- Video tutorial / updated slides
- Helper to set metadata restrictions correctly
- Usage is now shown when run without arguments
- New fields to Seqinfo
  - series_uid
- Reproin heuristic support for xnat
## Changed
- Dockerfile updated to use `dcm2niix v1.0.20180622`
- Conversion table will be regenerated if heurisic has changed
- Do not touch existing BIDS files
  - events.tsv
  - task JSON
## Fixed
- Python 2.7.8 and older installation
- Support for updated packages
  - `Datalad` 0.10
  - `pydicom` 1.0.2
- Later versions of `pydicom` are prioritized first
- JSON pretty print should not remove spaces
- Phasediff fieldmaps behavior
  - ensure phasediff exists
  - support for single magnitude acquisitions

# [0.5] - 2018-03-01
The first release after major refactoring:

## Changed
- Refactored into a proper `heudiconv` Python module
  - `heuristics` is now a `heudiconv.heuristics` submodule
  - you can specify shipped heuristics by name (e.g. `-f reproin`)
    without providing full path to their files
  - you need to use `--files` (not just positional argument(s)) if not
    using `--dicom_dir_templates` or `--subjects` to point to data files
    or directories with input DICOMs
- `Dockerfile` is generated by [neurodocker](https://github.com/kaczmarj/neurodocker)
- Logging verbosity reduced
- Increased leniency with missing DICOM fields
- `dbic_bids` heuristic renamed into reproin
## Added
- [LICENSE](https://github.com/nipy/heudiconv/blob/master/LICENSE)
  with Apache 2.0 license for the project
- [CHANGELOG.md](https://github.com/nipy/heudiconv/blob/master/CHANGELOG.md)
- [Regression testing](https://github.com/nipy/heudiconv/blob/master/tests/test_regression.py) on real data (using datalad)
- A dedicated [ReproIn](https://github.com/repronim/reproin) project
  with details about ReproIn setup/specification and operation using
  `reproin` heuristic shipped with heudiconv
- [utils/test-compare-two-versions.sh](utils/test-compare-two-versions.sh)
  helper to compare conversions with two different versions of heudiconv
## Removed
- Support for converters other than `dcm2niix`, which is now the default.
  Explicitly specify `-c none` to only prepare conversion specification
  files without performing actual conversion
## Fixed
- Compatibility with Nipype 1.0, PyDicom 1.0, and upcoming DataLad 0.10
- Consistency with converted files permissions
- Ensured subject id for BIDS conversions will be BIDS compliant
- Re-add `seqinfo` fields as column names in generated `dicominfo`
- More robust sanity check of the regex reformatted .json file to avoid
  numeric precision issues
- Many other various issues

# [0.4] - 2017-10-15
A usable release to support [DBIC][] use-case
## Added
- more testing
## Changes
- Dockerfile updates (added pigz, progressed forward [dcm2niix][])
## Fixed
- correct date/time in BIDS `_scans` files
- sort entries in `_scans` by date and then filename

# [0.3] - 2017-07-10
A somewhat working release on the way to support [DBIC][] use-case
## Added
- more tests
- grouping of dicoms by series if provided
- many more features and fixes

# [0.2] - 2016-10-20
An initial release on the way to support [DBIC][] use-case
## Added
- basic Python project assets (`setup.py`, etc)
- basic tests
- [datalad][] support
- dbic_bids heuristic
- `--dbg` command line flag to enter `pdb` environment upon failure
# Fixed
- Better Python3 support
- Better PEP8 compliance

# [0.1] - 2015-09-23

Initial version

---

## References
[DBIC]: http://dbic.dartmouth.edu
[datalad]: http://datalad.org
[dcm2niix]: https://github.com/rordenlab/dcm2niix
[#301]: https://github.com/nipy/heudiconv/issues/301
[#353]: https://github.com/nipy/heudiconv/issues/353
[#354]: https://github.com/nipy/heudiconv/issues/354
[#357]: https://github.com/nipy/heudiconv/issues/357
[#358]: https://github.com/nipy/heudiconv/issues/358
[#347]: https://github.com/nipy/heudiconv/issues/347
[#366]: https://github.com/nipy/heudiconv/issues/366
[#368]: https://github.com/nipy/heudiconv/issues/368
[#373]: https://github.com/nipy/heudiconv/issues/373
[#485]: https://github.com/nipy/heudiconv/issues/485
[#442]: https://github.com/nipy/heudiconv/issues/442
[#451]: https://github.com/nipy/heudiconv/issues/451
[#459]: https://github.com/nipy/heudiconv/issues/459
[#473]: https://github.com/nipy/heudiconv/issues/473
[#477]: https://github.com/nipy/heudiconv/issues/477
[#293]: https://github.com/nipy/heudiconv/issues/293
[#304]: https://github.com/nipy/heudiconv/issues/304
[#306]: https://github.com/nipy/heudiconv/issues/306
[#310]: https://github.com/nipy/heudiconv/issues/310
[#327]: https://github.com/nipy/heudiconv/issues/327
[#328]: https://github.com/nipy/heudiconv/issues/328
[#334]: https://github.com/nipy/heudiconv/issues/334
[#337]: https://github.com/nipy/heudiconv/issues/337
[#339]: https://github.com/nipy/heudiconv/issues/339
[#342]: https://github.com/nipy/heudiconv/issues/342
[#343]: https://github.com/nipy/heudiconv/issues/343
[#344]: https://github.com/nipy/heudiconv/issues/344
[#345]: https://github.com/nipy/heudiconv/issues/345
[#348]: https://github.com/nipy/heudiconv/issues/348
[#351]: https://github.com/nipy/heudiconv/issues/351
[#352]: https://github.com/nipy/heudiconv/issues/352
[#359]: https://github.com/nipy/heudiconv/issues/359
[#360]: https://github.com/nipy/heudiconv/issues/360
[#364]: https://github.com/nipy/heudiconv/issues/364
[#369]: https://github.com/nipy/heudiconv/issues/369
[#372]: https://github.com/nipy/heudiconv/issues/372
[#375]: https://github.com/nipy/heudiconv/issues/375
[#376]: https://github.com/nipy/heudiconv/issues/376
[#379]: https://github.com/nipy/heudiconv/issues/379
[#380]: https://github.com/nipy/heudiconv/issues/380
[#387]: https://github.com/nipy/heudiconv/issues/387
[#390]: https://github.com/nipy/heudiconv/issues/390
[#404]: https://github.com/nipy/heudiconv/issues/404
[#407]: https://github.com/nipy/heudiconv/issues/407
[#419]: https://github.com/nipy/heudiconv/issues/419
[#420]: https://github.com/nipy/heudiconv/issues/420
[#425]: https://github.com/nipy/heudiconv/issues/425
[#430]: https://github.com/nipy/heudiconv/issues/430
[#432]: https://github.com/nipy/heudiconv/issues/432
[#434]: https://github.com/nipy/heudiconv/issues/434
[#436]: https://github.com/nipy/heudiconv/issues/436
[#437]: https://github.com/nipy/heudiconv/issues/437
[#462]: https://github.com/nipy/heudiconv/issues/462
[#464]: https://github.com/nipy/heudiconv/issues/464
[#480]: https://github.com/nipy/heudiconv/issues/480
[#481]: https://github.com/nipy/heudiconv/issues/481
[#487]: https://github.com/nipy/heudiconv/issues/487
[#489]: https://github.com/nipy/heudiconv/issues/489
[#491]: https://github.com/nipy/heudiconv/issues/491
[#496]: https://github.com/nipy/heudiconv/issues/496
[#500]: https://github.com/nipy/heudiconv/issues/500
[#501]: https://github.com/nipy/heudiconv/issues/501
[#507]: https://github.com/nipy/heudiconv/issues/507
[#508]: https://github.com/nipy/heudiconv/issues/508
[#523]: https://github.com/nipy/heudiconv/issues/523








            

          

      

      

    

  

    
      
          
            
  
Tutorials



	Quickstart
	Prepare Dataset

	Basic Conversion

	Output

	Validation

	Next





	Custom Heuristics
	Step 1: Generate Skeleton
	The .heudiconv hidden directory





	Step 2: Modify Heuristic
	Section 1

	Section 1b

	Section 2





	Step 3:
	TIPS





	Exploring Criteria
	Why Experiment?
	Tuples













	Reproin
	Get Example Dataset

	Convert and organize

	Output Directory Structure
	Reproin Scanner File Names














External Tutorials

Luckily(?), we live in an era of plentiful information. Below are some links to
other users’ tutorials covering their experience with heudiconv.


	YouTube tutorial [https://www.youtube.com/watch?v=O1kZAuR7E00] by James Kent [https://github.com/jdkent].


	Walkthrough [http://reproducibility.stanford.edu/bids-tutorial-series-part-2a/] by the Stanford Center for Reproducible Neuroscience [http://reproducibility.stanford.edu/].


	U of A Neuroimaging Core [https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/heudiconv.html] by Dianne Patterson [https://github.com/dkp].


	Sample Conversion: Coastal Coding 2019 [http://www.repronim.org/coco2019-training/presentations/heudiconv/#1].


	A joined DataLad and HeuDiConv tutorial for reproducible fMRI studies [http://www.repronim.org/coco2019-training/04-02-reproin/].


	The ReproIn conversion workflow overview [https://github.com/repronim/reproin#conversion].


	Slides [https://docs.google.com/presentation/d/14UNWQVY49c9Xc-7sj1FkoILXnt-wYjW404oqT-FtCW8/edit#slide=id.p] and
recording [https://www.youtube.com/watch?v=j2SKX37-w4c&list=PLs3CA4ShM1DUX0nTMKfoB8Z6kdrZpByLa&index=5&t=0s]
of a ReproNim Webinar on heudiconv.





Caution

Some of these tutorials may not be up to date with
the latest releases of heudiconv.







            

          

      

      

    

  

    
      
          
            
  
Quickstart

This tutorial is based on Dianne Patterson’s University of Arizona tutorials [https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/heudiconv.html#lesson-3-reproin-py]

This guide assumes you have already installed heudiconv and dcm2niix and
demonstrates how to use the heudiconv tool with a provided heuristic.py to convert DICOMS into the BIDS data structure.


Prepare Dataset

Download and unzip sub-219_dicom.zip [https://datasets.datalad.org/?dir=/repronim/heudiconv-tutorial-example/].

We will be working from a directory called MRIS. Under the MRIS directory is the dicom subdirectory: Under the subject number 219 the session itbs is nested.  Each dicom sequence folder is nested under the session:

dicom
└── 219
    └── itbs
        ├── Bzero_verify_PA_17
        ├── DTI_30_DIRs_AP_15
        ├── Localizers_1
        ├── MoCoSeries_19
        ├── MoCoSeries_31
        ├── Post_TMS_restingstate_30
        ├── T1_mprage_1mm_13
        ├── field_mapping_20
        ├── field_mapping_21
        └── restingstate_18
Nifti
└── code
    └── heuristic1.py







Basic Conversion

Next we will use heudiconv convert DICOMS into the BIDS data structure.
The example dataset includes an example heuristic file, heuristic1.py.
Typical use of heudiconv will require the creation and editing of your heuristics file, which we will cover
in a later tutorial.



Note

Heudiconv requires you to run the command from the parent
directory of both the Dicom and Nifti directories, which is MRIS in
our case.






Run the following command:

heudiconv  --files dicom/219/itbs/*/*.dcm -o Nifti -f Nifti/code/heuristic1.py -s 219 -ss itbs -c dcm2niix -b --minmeta --overwrite






	We specify the dicom files to convert with –files


	The heuristic file is provided with the -f option


	We tell heudiconv to place our output in the Nifti dir with -o


	-b indicates that we want to output in BIDS format


	–minmeta guarantees that meta-information in the dcms does not get inserted into the JSON sidecar. This is good because the information is not needed but can overflow the JSON file causing some BIDS apps to crash.






Output

The Nifti directory will contain a bids-compliant subject directory:

└── sub-219
    └── ses-itbs
        ├── anat
        ├── dwi
        ├── fmap
        └── func





The following required BIDS text files are also created in the Nifti directory. Details for filling in these skeleton text files can be found under tabular files [https://bids-specification.readthedocs.io/en/stable/02-common-principles.html#tabular-files] in the BIDS specification:

CHANGES
README
dataset_description.json
participants.json
participants.tsv
task-rest_bold.json







Validation

Ensure that everything is according to spec by using bids validator [https://bids-standard.github.io/bids-validator/]

Click Choose File and then select the Nifti directory.  There should be no errors (though there are a couple of warnings).



Note

Your files are not uploaded to the BIDS validator, so there are no privacy concerns!








Next

In the following sections, you will modify heuristic.py yourself so you can test different options and understand how to work with your own data.





            

          

      

      

    

  

    
      
          
            
  
Custom Heuristics

This tutorial is based on Dianne Patterson’s University of Arizona tutorials [https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/heudiconv.html#lesson-3-reproin-py]

In this tutorial we go more in depth, creating our own heuristic.py and modifying it for our needs:


	Step1 Generate a heuristic (translation) file skeleton and some associated descriptor text files.


	Step2 Modify the heuristic.py to specify BIDS output names and directories, and the input DICOM characteristics.


	Step3 Call HeuDiConv to run on more subjects and sessions.




Prerequisites:


	Ensure heudiconv and dcm2niix is installed.


	Prepare the dataset used in the quickstart.





Step 1: Generate Skeleton


Note

Step 1 only needs to be completed once for each project.
If repeating this step, ensure that the .heudiconv directory is removed.



From the MRIS directory, run the following command to process the dcm files that you downloaded and unzipped for this tutorial.:

heudiconv --files dicom/219/*/*/*.dcm -o Nifti/ -f convertall -s 219 -c none






	--files dicom/{subject}/*/*/*.dcm identifies the path to the DICOM files and specifies that they have the extension .dcm in this case.


	-o Nifti/ is the output in Nifti.  If the output directory does not exist, it will be created.


	-f convertall This creates a heuristic.py template from an existing heuristic module. There are other heuristic modules [https://github.com/nipy/heudiconv/tree/master/heudiconv/heuristics] , but convertall is a good default.


	-s 219 specifies the subject number.


	-c none indicates you are not actually doing any conversion right now.




You will now have a heudiconv skeleton in the <output_dir>/.heudiconv directory, in our case Nifti/.heudiconv


The .heudiconv hidden directory

Take a look at MRIS/Nifti/.heudiconv/219/info/, heudiconv has produced two files of interest: a skeleton heuristic.py and a dicominfo.tsv file.
The generated heuristic file template contains comments explaining usage.


Warning


	The Good Every time you run conversion to create the BIDS NIfTI files and directories, a detailed record of what you did is recorded in the .heudiconv directory.  This includes a copy of the heuristic.py module that you ran for each subject and session. Keep in mind that the hidden .heudiconv directory gets updated every time you run heudiconv. Together your code and .heudiconv directories provide valuable provenance information that should remain with your data.


	The Bad If you rerun heuristic.py for some subject and session that has already been run, heudiconv quietly uses the conversion routines it stored in .heudiconv.  This can be really annoying if you are troubleshooting heuristic.py.


	More Good You can remove subject and session information from .heudiconv and run it fresh.  In fact, you can entirely remove the .heudiconv directory and still run the heuristic.py you put in the code directory.









Step 2: Modify Heuristic

We will modify the generated heuristic.py so heudiconv will arrange the output in a BIDS directory structure.

It is okay to rename this file, or to have several versions with different names, just be sure to pass the intended filename with -f. See Heuristics File docs for more info.


	I provide three section labels (1, 1b and 2) to facilitate exposition here. Each of these sections should be manually modified by you for your project.





Section 1


	This heuristic.py does not import all sequences in the example Dicom directory. This is a feature of heudiconv: You do not need to import scouts, motion corrected images or other DICOMs of no interest.


	You may wish to add, modify or remove keys from this section for your own data:

# Section 1: These key definitions should be revised by the user
###################################################################
# For each sequence, define a key variables (e.g., t1w, dwi etc) and template using the create_key function:
# key = create_key(output_directory_path_and_name).

###### TIPS #######
# If there are sessions, then session must be subfolder name.
# Do not prepend the ses key to the session! It will be prepended automatically for the subfolder and the filename.
# The final value in the filename should be the modality.  It does not have a key, just a value.
# Otherwise, there is a key for every value.
# Filenames always start with subject, optionally followed by session, and end with modality.

###### Definitions #######
# The "data" key creates sequential numbers which can be used for naming sequences.
# This is especially valuable if you run the same sequence multiple times at the scanner.
data = create_key('run-{item:03d}')

t1w = create_key('sub-{subject}/{session}/anat/sub-{subject}_{session}_T1w')

dwi = create_key('sub-{subject}/{session}/dwi/sub-{subject}_{session}_dir-AP_dwi')

# Save the RPE (reverse phase-encode) B0 image as a fieldmap (fmap).  It will be used to correct
# the distortion in the DWI
fmap_rev_phase =  create_key('sub-{subject}/{session}/fmap/sub-{subject}_{session}_dir-PA_epi')

fmap_mag =  create_key('sub-{subject}/{session}/fmap/sub-{subject}_{session}_magnitude')

fmap_phase = create_key('sub-{subject}/{session}/fmap/sub-{subject}_{session}_phasediff')

# Even if this is resting state, you still need a task key
func_rest = create_key('sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_run-01_bold')
func_rest_post = create_key('sub-{subject}/{session}/func/sub-{subject}_{session}_task-rest_run-02_bold')







	Key


	Define a short informative key variable name for each image sequence you wish to export. Note that you can use any key names you want (e.g. foo would work as well as fmap_phase), but you need to be consistent.


	The key name is to the left of the = for each row in the above example.






	Template


	Use the variable {subject} to make the code general purpose, so you can apply it to different subjects in Step 3.


	Use the variable {session} to make the code general purpose only if you have multiple sessions for each subject.


	Once you use the variable {session}:


	Ensure that a session gets added to the output path, e.g., sub-{subject}/{session}/anat/ AND


	Session gets added to the output filename: sub-{subject}_{session}_T1w for every image in the session.


	Otherwise you will get bids validator errors [https://bids-standard.github.io/bids-validator/]






	Define the output directories and file names according to the BIDS specification [https://bids-specification.readthedocs.io/en/stable/modality-specific-files/magnetic-resonance-imaging-data.html]


	Note the output names for the fieldmap images (e.g., sub-219_ses-itbs_dir-PA_epi.nii.gz, sub-219_ses-itbs_magnitude1.nii.gz, sub-219_ses-itbs_magnitude2.nii.gz, sub-219_ses-itbs_phasediff.nii.gz).


	The reverse_phase encode dwi image (e.g., sub-219_ses-itbs_dir-PA_epi.nii.gz) is grouped with the fieldmaps because it is used to correct other images.


	Data that is not yet defined in the BIDS specification will cause the bids-validator to produce an error unless you include it in a .bidsignore [https://github.com/bids-standard/bids-validator?#bidsignore] file.






	data


	a key definition that creates sequential numbering


	03d means create three slots for digits 3d, and pad with zeros 0.


	This is useful if you have a scanner sequence with a single name but you run it repeatedly and need to generate separate files for each run. For example, you might define a single functional sequence at the scanner and then run it several times instead of creating separate names for each run.





Note

It is usually better to name your sequences explicitly (e.g., run-01, run-02 etc.) rather than depending on sequential numbering. There will be less confusion later.




	If you have a sequence with the same name that you run repeatedly WITHOUT the sequential numbering, HeuDiConv will overwrite earlier sequences with later ones.


	To ensure that a sequence includes sequential numbering, you also need to add run-{item:03d} (for example) to the key-value specification for that sequence.


	Here I illustrate with the t1w key-value pair:


	If you started with:


	t1w = create_key('sub-{subject}/anat/sub-{subject}_T1w'),






	You could add sequence numbering like this:


	t1w = create_key('sub-{subject}/anat/sub-{subject}_run-{item:03d}_T1w').






	Now if you export several T1w images for the same subject and session, using the exact same protocol, each will get a separate run number like this:


	sub-219_ses_run-001_T1w.nii.gz, sub-219_ses_run-002_T1w.nii.gz etc.


















Section 1b


	Based on your chosen keys, create a data dictionary called info:

# Section 1b: This data dictionary (below) should be revised by the user.
###########################################################################
# info is a Python dictionary containing the following keys from the infotodict defined above.
# This list should contain all and only the sequences you want to export from the dicom directory.
info = {t1w: [], dwi: [], fmap_rev_phase: [], fmap_mag: [], fmap_phase: [], func_rest: [], func_rest_post: []}

# The following line does no harm, but it is not part of the dictionary.
last_run = len(seqinfo)







	Enter each key in the dictionary in this format key: [], for example, t1w: [].


	Separate the entries with commas as illustrated above.






Section 2


	Define the criteria for identifying each DICOM series that corresponds to one of the keys you want to export:

# Section 2: These criteria should be revised by the user.
##########################################################
# Define test criteria to check that each DICOM sequence is correct
# seqinfo (s) refers to information in dicominfo.tsv. Consult that file for
# available criteria.
# Each sequence to export must have been defined in Section 1 and included in Section 1b.
# The following illustrates the use of multiple criteria:
for idx, s in enumerate(seqinfo):
    # Dimension 3 must equal 176 and the string 'mprage' must appear somewhere in the protocol_name
    if (s.dim3 == 176) and ('mprage' in s.protocol_name):
        info[t1w].append(s.series_id)

    # Dimension 3 must equal 74 and dimension 4 must equal 32, and the string 'DTI' must appear somewhere in the protocol_name
    if (s.dim3 == 74) and (s.dim4 == 32) and ('DTI' in s.protocol_name):
        info[dwi].append(s.series_id)

    # The string 'verify_P-A' must appear somewhere in the protocol_name
    if ('verify_P-A' in s.protocol_name):
        info[fmap_rev_phase] = [s.series_id]

    # Dimension 3 must equal 64, and the string 'field_mapping' must appear somewhere in the protocol_name
    if (s.dim3 == 64) and ('field_mapping' in s.protocol_name):
        info[fmap_mag] = [s.series_id]

    # Dimension 3 must equal 32, and the string 'field_mapping' must appear somewhere in the protocol_name
    if (s.dim3 == 32) and ('field_mapping' in s.protocol_name):
        info[fmap_phase] = [s.series_id]

    # The string 'resting_state' must appear somewhere in the protocol_name and the Boolean field is_motion_corrected must be False (i.e. not motion corrected)
    # This ensures I do NOT get the motion corrected MOCO series instead of the raw series!
    if ('restingstate' == s.protocol_name) and (not s.is_motion_corrected):
        info[func_rest].append(s.series_id)

    # The string 'Post_TMS_resting_state' must appear somewhere in the protocol_name and the Boolean field is_motion_corrected must be False (i.e. not motion corrected)

    # This ensures I do NOT get the motion corrected MOCO series instead of the raw series.
    if ('Post_TMS_restingstate' == s.protocol_name) and (not s.is_motion_corrected):
        info[func_rest_post].append(s.series_id)






	To define the criteria, look at dicominfo.tsv in .heudiconv/info. This file contains tab-separated values so you can easily view it in Excel or any similar spreadsheet program. dicominfo.tsv is not used programmatically to run heudiconv (i.e., you could delete it with no adverse consequences), but it is very useful for defining the test criteria for Section 2 of heuristic.py.


	Some values in dicominfo.tsv might be wrong. For example, my reverse phase encode sequence with two acquisitions of 74 slices each is reported as one acquisition with 148 slices (2018_12_11). Hopefully they’ll fix this. Despite the error in dicominfo.tsv, dcm2niix reconstructed the images correctly.


	You will be adding, removing or altering values in conditional statements based on the information you find in dicominfo.tsv.


	seqinfo (s) refers to the same information you can view in dicominfo.tsv (although seqinfo does not rely on dicominfo.tsv).


	Here are two types of criteria:


	s.dim3 == 176 is an equivalence (e.g., good for checking dimensions for a numerical data type).  For our sample T1w image to be exported from DICOM, it must have 176 slices in the third dimension.


	'mprage' in s.protocol_name says the protocol name string must include the word mprage for the T1w image to be exported from DICOM. This criterion string is case-sensitive.






	info[t1w].append(s.series_id) Given that the criteria are satisfied, the series should be named and organized as described in Section 1 and referenced by the info dictionary. The information about the processing steps is saved in the .heudiconv subdirectory.


	Here I have organized each conditional statement so that the sequence protocol name comes first followed by other criteria if relevant.  This is not necessary, though it does make the resulting code easier to read.











Step 3:


	You have now done all the hard work for your project. When you want to add a subject or session, you only need to run this third step for that subject or session (A record of each run is kept in .heudiconv for you):

heudiconv --files dicom/{subject}/*/*.dcm -o Nifti/ -f Nifti/code/heuristic.py -s 219 -ss itbs -c dcm2niix -b --minmeta --overwrite







	The first time you run this step, several important text files are generated (e.g., CHANGES, dataset_description.json, participants.tsv, README etc.).
On subsequent runs, information may be added (e.g., participants.tsv will be updated).
Other files, like the README and dataset_description.json should be updated manually.


	This Docker command is slightly different from the previous Docker command you ran.


	-f Nifti/code/heuristic.py now tells HeuDiConv to use your revised heuristic.py in the code directory.


	In this case, we specify the subject we wish to process -s 219 and the name of the session -ss itbs.


	We could specify multiple subjects like this: -s 219 220 -ss itbs


	-c dcm2niix -b indicates that we want to use the dcm2niix converter with the -b flag (which creates BIDS).


	--minmeta ensures that only the minimum necessary amount of data gets added to the JSON file when created.  On the off chance that there is a LOT of meta-information in the DICOM header, the JSON file will not get swamped by it. fmriprep and mriqc are very sensitive to this information overload and will crash, so minmeta provides a layer of protection against such corruption.


	--overwrite This is a peculiar option. Without it, I have found the second run of a sequence does not get generated. But with it, everything gets written again (even if it already exists).  I don’t know if this is my problem or the tool…but for now, I’m using --overwrite.


	Step 3 should produce a tree like this:

 Nifti
├── CHANGES
├── README
├── code
│   ├── __pycache__
│   │   └── heuristic1.cpython-36.pyc
│   ├── heuristic1.py
│   └── heuristic2.py
├── dataset_description.json
├── participants.json
├── participants.tsv
├── sub-219
│   └── ses-itbs
│       ├── anat
│       │   ├── sub-219_ses-itbs_T1w.json
│       │   └── sub-219_ses-itbs_T1w.nii.gz
│       ├── dwi
│       │   ├── sub-219_ses-itbs_dir-AP_dwi.bval
│       │   ├── sub-219_ses-itbs_dir-AP_dwi.bvec
│       │   ├── sub-219_ses-itbs_dir-AP_dwi.json
│       │   └── sub-219_ses-itbs_dir-AP_dwi.nii.gz
│       ├── fmap
│       │   ├── sub-219_ses-itbs_dir-PA_epi.json
│       │   ├── sub-219_ses-itbs_dir-PA_epi.nii.gz
│       │   ├── sub-219_ses-itbs_magnitude1.json
│       │   ├── sub-219_ses-itbs_magnitude1.nii.gz
│       │   ├── sub-219_ses-itbs_magnitude2.json
│       │   ├── sub-219_ses-itbs_magnitude2.nii.gz
│       │   ├── sub-219_ses-itbs_phasediff.json
│       │   └── sub-219_ses-itbs_phasediff.nii.gz
│       ├── func
│       │   ├── sub-219_ses-itbs_task-rest_run-01_bold.json
│       │   ├── sub-219_ses-itbs_task-rest_run-01_bold.nii.gz
│       │   ├── sub-219_ses-itbs_task-rest_run-01_events.tsv
│       │   ├── sub-219_ses-itbs_task-rest_run-02_bold.json
│       │   ├── sub-219_ses-itbs_task-rest_run-02_bold.nii.gz
│       │   └── sub-219_ses-itbs_task-rest_run-02_events.tsv
│       ├── sub-219_ses-itbs_scans.json
│       └── sub-219_ses-itbs_scans.tsv
└── task-rest_bold.json














TIPS


	Name Directories as you wish: You can name the project directory (e.g., MRIS)  and the output directory (e.g., Nifti) as you wish (just don’t put spaces in the names!).


	Age and Sex Extraction: Heudiconv will extract age and sex info from the DICOM header.  If there is any reason to believe this information is wrong in the DICOM header (for example, it was made-up because no one knew how old the subject was, or it was considered a privacy concern), then you need to check the output.  If you have Horos (or another DICOM editor), you can edit the values in the DICOM headers, otherwise you need to edit the values in the BIDS text file participants.tsv.


	Separating Sessions: If you have multiple sessions at the scanner, you should create an Exam folder for each session.  This will help you to keep the data organized and Exam will be reported in the study_description in your dicominfo.tsv, so that you can use it as a criterion.


	Don’t manually combine DICOMS from different sessions: If you combine multiple sessions in one subject DICOM folder, heudiconv will fail to run and will complain about conflicting study identifiers. You can get around the problem by figuring out which DICOMs are from different sessions and separating them so you deal with one set at a time.  This may mean you have to manually edit the BIDS output.



	Why might you manually combine sessions you ask? Because you never intended to have multiple sessions, but the subject had to complete some scans the next day. Or, because the scanner had to be rebooted.









	Don’t assume all your subjects’ dicoms have the same names or that the sequences were always run in the same order: If you develop a heuristic.py on one subject, try it and carefully evaluate the results on your other subjects.  This is especially true if you already collected the data before you started thinking about automating the output.  Every time you run HeuDiConv with heuristic.py, a new dicominfo.tsv file is generated.  Inspect this for differences in protocol names and series descriptions etc.


	Decompressing DICOMS: Decompress your data, heudiconv does not yet support compressed DICOM conversion. https://github.com/nipy/heudiconv/issues/287


	Create unique DICOM protocol names at the scanner If you have the opportunity to influence the DICOM naming strategies, then try to ensure that there is a unique protocol name for every run.  For example, if you repeat the fmri protocol three times, name the first one fmri_1, the next fmri_2, and the last fmri_3 (or any variation on this theme).  This will make it much easier to uniquely specify the sequences when you convert and reduce your chance of errors.







Exploring Criteria

dicominfo.tsv contains a human readable version of seqinfo.  Each column of data can be used as criteria for identifying the correct DICOM image. We have already provided examples of using string types, numbers, and Booleans (True-False). Tuples (immutable lists) are also available and examples of using these are provided below. To ensure that you are extracting the images you want, you need to be very careful about creating your initial heuristic.py.


Why Experiment?


	Criteria can be tricky.  Ensure the NIfTI files you create are the correct ones (for example, not the derived or motion corrected if you didn’t want that). In addition to looking at the images created (which tells you whether you have a fieldmap or T1w etc.), you should look at the dimensions of the image. Not only the dimensions, but the range of intensity values and the size of the image on disk should match for dcm2niix and heudiconv’s heuristic.py.


	For really tricky cases, download and install dcm2niix on your local machine and run it for a sequence of concern (in my experience, it is usually fieldmaps that go wrong).


	Although Python does not require you to use parentheses while defining criteria, parentheses are a good idea.  Parentheses will help ensure that complex criteria involving multiple logical operators and, or, not make sense and behave as expected.





Tuples

Suppose you want to use the values in the field image_type?  It is not a number or string or Boolean.  To discover the data type of a column, you can add a statement like this print(type(s.image_type)) to the for loop in Section 2 of heuristic.py. Then run heuristic.py (preferably without any actual conversions) and you should see an output like this <class 'tuple'>.  Here is an example of using a value from image_type as a criterion:

if ('ASL_3D_tra_iso' == s.protocol_name) and ('TTEST' in s.image_type):
   info[asl_der].append(s.series_id)





Note that this differs from testing for a string because you cannot test for any substring (e.g., ‘TEST’ would not work).  String tests will not work on a tuple datatype.


Note

image_type is described in the DICOM specification [https://dicom.innolitics.com/ciods/mr-image/general-image/00080008]









            

          

      

      

    

  

    
      
          
            
  
Reproin

This tutorial is based on Dianne Patterson’s University of Arizona tutorials [https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/heudiconv.html#lesson-3-reproin-py]

Reproin [https://github.com/ReproNim/reproin] is a setup for
automatic generation of sharable, version-controlled BIDS datasets from
MR scanners.

If you can control how your image sequences are named at the scanner, you can use the reproin naming convention.
If you cannot control such naming, or already have collected data, you can provide your custom heuristic mapping into reproin and thus in effect use reproin heuristic.
That will be a topic for another tutorial but meanwhile you can checkout reproin/issues/18 [https://github.com/ReproNim/reproin/issues/18#issuecomment-834598084] for a brief HOWTO.


Get Example Dataset

This example uses a phantom dataset: reproin_dicom.zip [https://datasets.datalad.org/?dir=/repronim/heudiconv-reproin-example] generated by the University of Arizona on their Siemens Skyra 3T with Syngo MR VE11c software on 2018_02_08.

The REPROIN directory is a simple reproin-compliant DICOM (.dcm) dataset without sessions.
(Derived dwi images (ADC, FA etc.) that the scanner produced have been removed.:

[user@local ~/reproin_dicom/REPROIN]$ tree -I "*.dcm"

    REPROIN
    ├── data
    └── dicom
        └── 001
            └── Patterson_Coben\ -\ 1
                ├── Localizers_4
                ├── anatT1w_acqMPRAGE_6
                ├── dwi_dirAP_9
                ├── fmap_acq4mm_7
                ├── fmap_acq4mm_8
                ├── fmap_dirPA_15
                └── func_taskrest_16







Convert and organize

From the REPROIN directory:

heudiconv -f reproin --bids  -o data --files dicom/001 --minmeta






	-f reproin specifies the converter file to use


	-o data/ specifies the output directory data.  If the output directory does not exist, it will be created.


	--files dicom/001 identifies the path to the DICOM files.


	--minmeta ensures that only the minimum necessary amount of data gets added to the JSON file when created.  On the off chance that there is a LOT of meta-information in the DICOM header, the JSON file will not get swamped by it. Rumors are that fMRIPrep and MRIQC might be sensitive to excess of metadata and might crash crash, so minmeta provides a layer of protection against such corruption.






Output Directory Structure

Heudiconv’s Reproin converter produces a hierarchy of directories with the BIDS dataset (here - Cohen) at the bottom:

data
└── Patterson
    └── Coben
        ├── sourcedata
        │   └── sub-001
        │       ├── anat
        │       ├── dwi
        │       ├── fmap
        │       └── func
        └── sub-001
            ├── anat
            ├── dwi
            ├── fmap
            └── func





The specific value for the hierarchy can be specified to HeuDiConv via –locator PATH option.
If not, ReproIn heuristic bases it on the value of the DICOM “Study Description”  field which is populated when user selects a specific Exam card located within some Region (see ReproIn Walkthrough “Organization” [https://github.com/ReproNim/reproin/blob/master/docs/walkthrough-1.md#organization]).


	The dataset is nested under two levels in the output directory: Region (Patterson) and Exam (Coben). Tree is reserved for other purposes at the UA research scanner.


	Although the Program Patient is not visible in the output hierarchy, it is important.  If you have separate sessions, then each session should have its own Program name.


	sourcedata contains tarred gzipped (.tgz) sets of DICOM images corresponding to NIfTI images.


	sub-001/ contains a single subject data within this BIDS dataset.


	The hidden directory is generated: REPROIN/data/Patterson/Coben/.heudiconv to contain derived mapping data, which could potentially be inspected or adjusted/used for re-conversion.





Reproin Scanner File Names


	
	For both BIDS and reproin, names are composed of an ordered series of key-value pairs, called [entities](https://github.com/bids-standard/bids-specification/blob/master/src/schema/objects/entities.yaml).
	Each key and its value are joined with a dash - (e.g., acq-MPRAGE, dir-AP).
These key-value pairs are joined to other key-value pairs with underscores _.
The exception is the modality label, which is discussed more below.







	Reproin scanner sequence names are simplified relative to the final BIDS output and generally conform to this scheme (but consult the reproin heuristics file [https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin.py] for additional options): sequence type-modality label _ session-session name _ task-task name _ acquisition-acquisition detail _ run-run number _ direction-direction label:

| func-bold_ses-pre_task-faces_acq-1mm_run-01_dir-AP







	Each sequence name begins with the seqtype key. The seqtype key is the modality and corresponds to the name of the BIDS directory where the sequence belongs, e.g., anat, dwi, fmap or func.


	The seqtype key is optionally followed by a dash - and a modality label value (e.g., anat-scout or anat-T2W). Often, the modality label is not needed because there is a predictable default for most seqtypes:


	For anat the default modality is T1W.  Thus a sequence named anat will have the same output BIDS files as a sequence named anat-T1w: sub-001_T1w.nii.gz.


	For fmap the default modality is epi.  Thus fmap_dir-PA will have the same output as fmap-epi_dir-PA: sub-001_dir-PA_epi.nii.gz.


	For func the default modality is bold. Thus, func-bold_task-rest will have the same output as func_task-rest: sub-001_task-rest_bold.nii.gz.


	Reproin gets the subject number from the DICOM metadata.


	If you have multiple sessions, the session name does not need to be included in every sequence name in the program (i.e., Program= Patient level mentioned above).  Instead, the session can be added to a single sequence name, usually the scout (localizer) sequence e.g. anat-scout_ses-pre, and reproin will propagate the session information to the other sequence names in the Program. Interestingly, reproin does not add the localizer to your BIDS output.


	When our scanner exports the DICOM sequences, all dashes are removed. But don’t worry, reproin handles this just fine.


	In the UA phantom reproin data, the subject was named 01.  Horos reports the subject number as 01 but exports the DICOMS into a directory 001.  If the data are copied to an external drive at the scanner, then the subject number is reported as 001_001 and the images are *.IMA instead of *.dcm.  Reproin does not care, it handles all of this gracefully.  Your output tree (excluding sourcedata and .heudiconv) should look like this:

.
|-- CHANGES
|-- README
|-- dataset_description.json
|-- participants.tsv
|-- sub-001
|   |-- anat
|   |   |-- sub-001_acq-MPRAGE_T1w.json
|   |   `-- sub-001_acq-MPRAGE_T1w.nii.gz
|   |-- dwi
|   |   |-- sub-001_dir-AP_dwi.bval
|   |   |-- sub-001_dir-AP_dwi.bvec
|   |   |-- sub-001_dir-AP_dwi.json
|   |   `-- sub-001_dir-AP_dwi.nii.gz
|   |-- fmap
|   |   |-- sub-001_acq-4mm_magnitude1.json
|   |   |-- sub-001_acq-4mm_magnitude1.nii.gz
|   |   |-- sub-001_acq-4mm_magnitude2.json
|   |   |-- sub-001_acq-4mm_magnitude2.nii.gz
|   |   |-- sub-001_acq-4mm_phasediff.json
|   |   |-- sub-001_acq-4mm_phasediff.nii.gz
|   |   |-- sub-001_dir-PA_epi.json
|   |   `-- sub-001_dir-PA_epi.nii.gz
|   |-- func
|   |   |-- sub-001_task-rest_bold.json
|   |   |-- sub-001_task-rest_bold.nii.gz
|   |   `-- sub-001_task-rest_events.tsv
|   `-- sub-001_scans.tsv
`-- task-rest_bold.json







	Note that despite all the the different subject names (e.g., 01, 001 and 001_001), the subject is labeled sub-001.









            

          

      

      

    

  

    
      
          
            
  
Heuristics File

The heuristic file controls how information about the DICOMs is used to convert
to a file system layout (e.g., BIDS).


Provided Heuristics

heudiconv provides over 10 pre-created heuristics, which can be seen here [https://github.com/nipy/heudiconv/tree/master/heudiconv/heuristics] .

These heuristic files are documented in their code comments.
Some of them, like convertall [https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/convertall.py] or ReproIn [https://github.com/nipy/heudiconv/blob/master/heudiconv/heuristics/reproin.py] could be immediately reused and represent two ends of the spectrum in heuristics:


	convertall is very simple and does not automate anything – it is for a user to modify filenames in the prepared conversion table, and then rerun with -c dcm2niix.


	reproin can be used fully automated, if original sequences were named according to its ReproIn convention.




Discover more on their user in the Tutorials section.

However, there is a large variety of data out there, and not all DICOMs
will be covered by the existing heuristics. This section will outline what
makes up a heuristic file, and some useful functions available when making one.


Components


infotodict(seqinfos)

The only required function for a heuristic, infotodict is used to both define
the conversion outputs and specify the criteria for scan to output association.
Conversion outputs are defined as keys, a tuple consisting of three elements:


	a template path used for the basis of outputs


	tuple of output types. Valid types include nii, nii.gz, and dicom.


	None - a historical artifact (corresponds to some notion of
annotation_class no living human is aware about)




The following details of the sequences could also be used as a {detail} in the conversion keys:


	item: an index of seqinfo (e.g., 1),


	subject: a subject label (e.g., qa)


	seqitem: sequence item, index with a sequence/protocol name (e.g., 3-anat-scout_ses-{date})


	subindex: an index within the seqinfo (e.g., 1),


	session: empty (no session) or a session entity (along with ses-, e.g., ses-20191216),


	bids_subject_session_prefix: shortcut for BIDS file name prefix combining subject and optional session (e.g., sub-qa_ses-20191216),


	bids_subject_session_dir: shortcut for BIDS file path combining subject and optional session (e.g., sub-qa/ses-20191216).





Note

An example conversion key

('sub-{subject}/func/sub-{subject}_task-test_run-{item}_bold', ('nii.gz', 'dicom'), None)


or equivalent in –bids mode which would work also if there is a specified session




('{bids_subject_session_dir}/func/{bids_subject_session_prefix}_task-test_run-{item}_bold', ('nii.gz', 'dicom'), None)



The seqinfos parameter is a list of namedtuples which serves as a grouped and
stacked record of the DICOMs passed in. Each item in seqinfo contains DICOM
metadata that can be used to isolate the series, and assign it to a conversion
key.

A function create_key is commonly defined by heuristics (internally)
to assist in creating the key, and to be used inside infotodict.

A dictionary of {conversion key: series_id} is returned, where
series_id is the 3rd (indexes as [2] or accessed as .series_id from
seqinfo).



create_key(template, outtype)

A common helper function used to create the conversion key in infotodict.
But it is not used directly by HeuDiConv.



filter_files(fl)

A utility function used to filter any input files.

If this function is included, every file found will go through this filter. Any
files where this function returns True will be filtered out.



filter_dicom(dcm_data)

A utility function used to filter any DICOMs.

If this function is included, every DICOM found will go through this filter. Any
DICOMs where this function returns True will be filtered out.



infotoids(seqinfos, outdir)

Further processing on seqinfos to deduce/customize subject, session, and locator.

A dictionary of {“locator”: locator, “session”: session, “subject”: subject} is returned.



grouping string or grouping(files, dcmfilter, seqinfo)

Whenever --grouping custom (-g custom) is used, this attribute or callable
will be used to inform how to group the DICOMs into separate groups. From
original PR#359 [https://github.com/nipy/heudiconv/pull/359]:

grouping = 'AcquisitionDate'





or:

def grouping(files, dcmfilter, seqinfo):
    seqinfos = collections.OrderedDict()
    ...
    return seqinfos  # ordered dict containing seqinfo objects: list of DICOMs







custom_seqinfo(wrapper, series_files)

If present this function will be called on each group of dicoms with
a sample nibabel dicom wrapper to extract additional information
to be used in infotodict.

Importantly the return value of that function needs to be hashable.
For instance the following non-hashable types can be converted to an alternative
hashable type:
- list > tuple
- dict > frozendict
- arrays > bytes (tobytes(), or pickle.dumps), str or tuple of tuples.



POPULATE_INTENDED_FOR_OPTS

Dictionary to specify options to populate the 'IntendedFor' field of the fmap
jsons.

When a BIDS session has fmaps, they can automatically be assigned to be used for
susceptibility distortion correction of other non-fmap images in the session
(populating the 'IntendedFor' field in the fmap json file).

For this automated assignment, fmaps are taken as groups (_phase and _phasediff
images and the corresponding _magnitude images; consecutive Spin-Echo images collected
with opposite phase encoding polarity (pepolar case); etc.).

This is achieved by checking, for every non-fmap image in the session, which fmap
groups are suitable candidates to correct for distortions in that image.  Then, if there is
more than one candidate (e.g., if there was a fmap collected at the beginning of the
session and another one at the end), the user can specify which one to use.


	The parameters that can be specified and the allowed options are defined in bids.py:
	
	'matching_parameter': The imaging parameter that needs to match between the fmap
and an image for the fmap to be considered as a suitable to correct that image.
Allowed options are:


	'Shims': heudiconv will check the ShimSetting in the .json files and
will only assign fmaps to images if the ShimSettings are identical for both.


	'ImagingVolume': both fmaps and images will need to have the same the imaging
volume (the header affine transformation: position, orientation and voxel size, as well
as number of voxels along each dimensions).


	'ModalityAcquisitionLabel': it checks for what modality (anat, func, dwi) each
fmap is intended by checking the _acq- label in the fmap filename and finding
corresponding modalities (e.g. _acq-fmri, _acq-bold and _acq-func will be matched
with the func modality)


	'CustomAcquisitionLabel': it checks for what modality images each  fmap is intended
by checking the _acq- custom label (e.g. _acq-XYZ42) in the fmap filename, and
matching it with:
- the corresponding modality image _acq- label for modalities other than func
(e.g. _acq-XYZ42 for dwi images)
- the corresponding image _task- label for the func modality (e.g. _task-XYZ42)


	'Force': forces heudiconv to consider any fmaps in the session to be
suitable for any image, no matter what the imaging parameters are.






	'criterion': Criterion to decide which of the candidate fmaps will be assigned to
a given file, if there are more than one. Allowed values are:


	'First': The first matching fmap.


	'Closest': The closest in time to the beginning of the image acquisition.













Note

Example:

POPULATE_INTENDED_FOR_OPTS = {
        'matching_parameters': ['ImagingVolume', 'Shims'],
        'criterion': 'Closest'
}







If POPULATE_INTENDED_FOR_OPTS is not present in the heuristic file, IntendedFor
will not be populated automatically.







            

          

      

      

    

  

    
      
          
            
  
CLI Reference

heudiconv processes DICOM files and converts the output into user defined
paths.


	Example:
	heudiconv -d ‘rawdata/{subject}’ -o . -f heuristic.py -s s1 s2 s3







usage: heudiconv [-h] [--version]
                 [-d DICOM_DIR_TEMPLATE | --files [FILES ...]]
                 [-s [SUBJS ...]] [-c {dcm2niix,none}] [-o OUTDIR]
                 [-l LOCATOR] [-a CONV_OUTDIR] [--anon-cmd ANON_CMD]
                 [-f HEURISTIC] [-p] [-ss SESSION]
                 [-b [BIDSOPTION1 [BIDSOPTION2 ...]]] [--overwrite]
                 [--datalad] [--dbg]
                 [--command {heuristics,heuristic-info,ls,populate-templates,sanitize-jsons,treat-jsons,populate-intended-for}]
                 [-g {studyUID,accession_number,all,custom}] [--minmeta]
                 [--random-seed RANDOM_SEED] [--dcmconfig DCMCONFIG]
                 [-q {SLURM,None}] [--queue-args QUEUE_ARGS]






Named Arguments


	--version

	show program’s version number and exit



	-d, --dicom_dir_template

	Location of dicomdir that can be indexed with subject id {subject} and session {session}. Tarballs (can be compressed) are supported in addition to directory. All matching tarballs for a subject are extracted and their content processed in a single pass. If multiple tarballs are found, each is assumed to be a separate session and the –ses argument is ignored. Note that you might need to surround the value with quotes to avoid {…} being considered by shell



	--files

	Files (tarballs, dicoms) or directories containing files to process. Cannot be provided if using –dicom_dir_template.



	-s, --subjects

	List of subjects - required for dicom template. If not provided, DICOMS would first be “sorted” and subject IDs deduced by the heuristic.



	-c, --converter

	Possible choices: dcm2niix, none

Tool to use for DICOM conversion. Setting to “none” disables the actual conversion step – useful for testing heuristics.



	-o, --outdir

	Output directory for conversion setup (for further customization and future reference. This directory will refer to non-anonymized subject IDs.



	-l, --locator

	Study path under outdir. If provided, it overloads the value provided by the heuristic. If –datalad is enabled, every directory within locator becomes a super-dataset thus establishing a hierarchy. Setting to “unknown” will skip that dataset.



	-a, --conv-outdir

	Output directory for converted files. By default this is identical to –outdir. This option is most useful in combination with –anon-cmd.



	--anon-cmd

	Command to run to convert subject IDs used for DICOMs to anonymized IDs. Such command must take a single argument and return a single anonymized ID. Also see –conv-outdir.



	-f, --heuristic

	Name of a known heuristic or path to the Python script containing heuristic.



	-p, --with-prov

	Store additional provenance information. Requires python-rdflib.



	-ss, --ses

	Session for longitudinal study_sessions. Default is None.



	-b, --bids

	Possible choices: notop

Flag for output into BIDS structure. Can also take BIDS-specific options, e.g., –bids notop. The only currently supported options is “notop”, which skips creation of top-level BIDS files. This is useful when running in batch mode to prevent possible race conditions.



	--overwrite

	Overwrite existing converted files.



	--datalad

	Store the entire collection as DataLad dataset(s). Small files will be committed directly to git, while large to annex. New version (6) of annex repositories will be used in a “thin” mode so it would look to mortals as just any other regular directory (i.e. no symlinks to under .git/annex). For now just for BIDS mode.



	--dbg

	Do not catch exceptions and show exception traceback.



	--command

	Possible choices: heuristics, heuristic-info, ls, populate-templates, sanitize-jsons, treat-jsons, populate-intended-for

Custom action to be performed on provided files instead of regular operation.



	-g, --grouping

	Possible choices: studyUID, accession_number, all, custom

How to group dicoms (default: by studyUID).



	--minmeta

	Exclude dcmstack meta information in sidecar jsons.



	--random-seed

	Random seed to initialize RNG.



	--dcmconfig

	JSON file for additional dcm2niix configuration.







Conversion submission options


	-q, --queue

	Possible choices: SLURM, None

Batch system to submit jobs in parallel.



	--queue-args

	Additional queue arguments passed as a single string of space-separated Argument=Value pairs.









            

          

      

      

    

  

    
      
          
            
  
Using heudiconv in a Container

If heudiconv is installed via a Docker container, you
can run the commands in the following format:

docker run nipy/heudiconv:latest [heudiconv options]





So a user running via container would check the version with this command:

docker run nipy/heudiconv:latest --version





Which is equivalent to the locally installed command:

heudiconv --version






Bind mount

Typically, users of heudiconv will be operating on data that is on their local machine. We can give heudiconv access to that data via a bind mount, which is the -v syntax.

Once common pattern is to share the working directory with -v $PWD:$PWD, so heudiconv will behave as though it is installed on your system. However, you should be aware of how permissions work depending on your container toolset.


Docker Permissions

When you run a container with docker without specifying a user, it will be run as root.
This isn’t ideal if you are operating on data owned by your local user, so for Docker it is recommended to specify that the container will run as your user.:

docker run --user=$(id -u):$(id -g) -e "UID=$(id -u)" -e "GID=$(id -g)" --rm -t -v $PWD:$PWD nipy/heudiconv:latest --version







Podman Permissions

When running Podman without specifying a user, the container is run as root inside the container, but your user outside of the container.
This default behavior usually works for heudiconv users:

docker run -v $PWD:PWD nipy/heudiconv:latest --version








Other Common Options

We typically recommend users make use of the following flags to Docker and Podman


	-it Interactive terminal


	--rm Remove the changes to the container when it completes








            

          

      

      

    

  

    
      
          
            
  
API Reference



	BIDS

	Conversion

	DICOMS

	Parsing

	Batch Queuing

	Utility








            

          

      

      

    

  

    
      
          
            
  
BIDS

Handle BIDS specific operations


	
exception heudiconv.bids.BIDSError

	




	
class heudiconv.bids.BIDSFile(entities: dict[str, str], suffix: str, extension: str | None)

	as defined in https://bids-specification.readthedocs.io/en/stable/99-appendices/04-entity-table.html
which might soon become machine readable
order matters


	
classmethod parse(filename: str) → BIDSFile

	Parse the filename for BIDS entities, suffix and extension










	
heudiconv.bids.HEUDICONV_VERSION_JSON_KEY = 'HeudiconvVersion'

	JSON Key where we will embed our version in the newly produced .json files






	
heudiconv.bids.add_rows_to_scans_keys_file(fn: str, newrows: dict[str, list[str]]) → None

	Add new rows to the _scans file.


	Parameters:

	
	fn (str) – filename


	newrows (dict) – extra rows to add (acquisition time, referring physician, random string)













	
heudiconv.bids.convert_sid_bids(subject_id: str) → str

	Shim for stripping any non-BIDS compliant characters within subject_id


	Parameters:

	subject_id (string)



	Returns:

	sid – New subject ID



	Return type:

	string










	
heudiconv.bids.find_compatible_fmaps_for_run(json_file: str, fmap_groups: dict[str, list[str]], matching_parameters: list[str]) → dict[str, list[str]]

	Finds compatible fmaps for a given run, for populate_intended_for.
(Note: It is the responsibility of the calling function to make sure
the arguments are OK)


	Parameters:

	
	json_file (str) – path to the json file


	fmap_groups (dict) – key: prefix common to the group
value: list of all fmap paths in the group


	matching_parameters (list of str from AllowedFmapParameterMatching) – matching_parameters that will be used to match runs






	Returns:

	compatible_fmap_groups – Subset of the fmap_groups which match json_file, according
to the matching_parameters.
key: prefix common to the group
value: list of all fmap paths in the group



	Return type:

	dict










	
heudiconv.bids.find_compatible_fmaps_for_session(path_to_bids_session: str, matching_parameters: list[str]) → dict[str, dict[str, list[str]]] | None

	Finds compatible fmaps for all non-fmap runs in a session.
(Note: It is the responsibility of the calling function to make sure
the arguments are OK)


	Parameters:

	
	path_to_bids_session (str) – path to the session folder (or to the subject folder, if there are no
sessions).


	matching_parameters (list of str from AllowedFmapParameterMatching) – matching_parameters that will be used to match runs






	Returns:

	compatible_fmap – Dict of compatible_fmaps_groups (values) for each non-fmap run (keys)



	Return type:

	dict










	
heudiconv.bids.find_fmap_groups(fmap_dir: str) → dict[str, list[str]]

	Finds the different fmap groups in a fmap directory.
By groups here we mean fmaps that are intended to go together
(with reversed PE polarity, magnitude/phase, etc.)


	Parameters:

	fmap_dir (str) – path to the session folder (or to the subject folder, if there are no
sessions).



	Returns:

	fmap_groups – key: prefix common to the group (e.g. no “dir” entity, “_phase”/”_magnitude”, …)
value: list of all fmap paths in the group



	Return type:

	dict










	
heudiconv.bids.find_subj_ses(f_name: str) → tuple[str | None, str | None]

	Given a path to the bids formatted filename parse out subject/session






	
heudiconv.bids.get_formatted_scans_key_row(dcm_fn: str | Path) → list[str]

	
	Parameters:

	dcm_fn (str)



	Returns:

	row – [ISO acquisition time, performing physician name, random string]



	Return type:

	list










	
heudiconv.bids.get_key_info_for_fmap_assignment(json_file: str, matching_parameter: str) → list[Any]

	Gets key information needed to assign fmaps to other modalities.
(Note: It is the responsibility of the calling function to make sure
the arguments are OK)


	Parameters:

	
	json_file (str) – path to the json file


	matching_parameter (str in AllowedFmapParameterMatching) – matching_parameter that will be used to match runs






	Returns:

	key_info – part of the json file that will need to match between the fmap and
the other image



	Return type:

	list










	
heudiconv.bids.get_shim_setting(json_file: str) → Any

	Gets the “ShimSetting” field from a json_file.
If no “ShimSetting” present, return error


	Parameters:

	json_file (str)



	Return type:

	str with “ShimSetting” value










	
heudiconv.bids.maybe_na(val: Any) → str

	Return ‘n/a’ if non-None value represented as str is not empty

Primarily for the consistent use of lower case ‘n/a’ so ‘N/A’ and ‘NA’
are also treated as ‘n/a’






	
heudiconv.bids.populate_aggregated_jsons(path: str) → None

	Aggregate across the entire BIDS dataset .jsons into top level .jsons

Top level .json files would contain only the fields which are
common to all subject[/session]/type/*_modality.jsons.

ATM aggregating only for *_task*_bold.json files. Only the task- and
OPTIONAL _acq- field is retained within the aggregated filename.  The other
BIDS _key-value pairs are “aggregated over”.


	Parameters:

	path (str) – Path to the top of the BIDS dataset










	
heudiconv.bids.populate_bids_templates(path: str, defaults: dict[str, Any] | None = None) → None

	Premake BIDS text files with templates






	
heudiconv.bids.populate_intended_for(path_to_bids_session: str, matching_parameters: str | list[str], criterion: str) → None

	Adds the ‘IntendedFor’ field to the fmap .json files in a session folder.
It goes through the session folders and for every json file, it finds
compatible_fmaps: fmaps that have the same matching_parameters as the json
file (e.g., same ‘Shims’).

If there are more than one compatible_fmaps, it will use the criterion
specified by the user (default: ‘Closest’ in time).

Because fmaps come in groups (with reversed PE polarity, or magnitude/
phase), we work with fmap_groups.


	Parameters:

	
	path_to_bids_session (str) – path to the session folder (or to the subject folder, if there are no
sessions).


	matching_parameters (list of str from AllowedFmapParameterMatching) – matching_parameters that will be used to match runs


	criterion (str in ['First', 'Closest']) – matching_parameters that will be used to decide which of the matching
fmaps to use













	
heudiconv.bids.sanitize_label(label: str) → str

	Strips any non-BIDS compliant characters within label


	Parameters:

	label (string)



	Returns:

	clean_label – New, sanitized label



	Return type:

	string










	
heudiconv.bids.save_scans_key(item: tuple[str, tuple[str, ...], list[str]], bids_files: list[str]) → None

	
	Parameters:

	
	item


	bids_files (list of str)













	
heudiconv.bids.select_fmap_from_compatible_groups(json_file: str, compatible_fmap_groups: dict[str, list[str]], criterion: str) → str | None

	Selects the fmap that will be used to correct for distortions in json_file
from the compatible fmap_groups list, based on the given criterion
(Note: It is the responsibility of the calling function to make sure
the arguments are OK)


	Parameters:

	
	json_file (str) – path to the json file


	compatible_fmap_groups (dict) – fmap_groups that are compatible with the specific json_file


	criterion (str in ['First', 'Closest']) – matching_parameters that will be used to decide which fmap to use






	Returns:

	selected_fmap_key – key from the compatible_fmap_groups for the selected fmap group



	Return type:

	str










	
heudiconv.bids.treat_age(age: str | float | None) → str | None

	Age might encounter ‘Y’ suffix or be a float






	
heudiconv.bids.tuneup_bids_json_files(json_files: list[str]) → None

	Given a list of BIDS .json files, e.g.








            

          

      

      

    

  

    
      
          
            
  
Conversion


	
heudiconv.convert.add_taskname_to_infofile(infofiles: str | list[str]) → None

	Add the “TaskName” field to json files with _task- entity in the name.

Note: _task- entity could be present not only in functional data
but in many other modalities now.


	Parameters:

	infofiles (list or str) – json filenames or a single filename.










	
heudiconv.convert.bvals_are_zero(bval_file: str | list) → bool

	Checks if all entries in a bvals file are zero (or 5, for Siemens files).


	Parameters:

	bval_file (str) – file with the bvals



	Return type:

	True if all are all 0 or 5; False otherwise.










	
heudiconv.convert.convert(items: list[tuple[str, tuple[str, ...], list[str]]], converter: str, scaninfo_suffix: str, custom_callable: Callable[[str, tuple[str, ...], list[str]], Any] | None, with_prov: bool, bids_options: str | None, outdir: str, min_meta: bool, overwrite: bool, symlink: bool = True, prov_file: str | None = None, dcmconfig: str | None = None, populate_intended_for_opts: PopulateIntendedForOpts | None = None) → None

	Perform actual conversion (calls to converter etc) given info from
heuristic’s infotodict






	
heudiconv.convert.convert_dicom(item_dicoms: list[str], bids_options: str | None, prefix: str, outdir: str, tempdirs: TempDirs, _symlink: bool, overwrite: bool) → None

	Save DICOMs as output (default is by symbolic link)


	Parameters:

	
	item_dicoms (list of filenames) – DICOMs to save


	bids_options (str or None) – If not None then save to BIDS format. String may be empty
or contain bids specific options


	prefix (string) – Conversion outname


	outdir (string) – Output directory


	tempdirs (TempDirs instance) – Object to handle temporary directories created
TODO: remove


	symlink (bool) – Create softlink to DICOMs - if False, create hardlink instead.


	overwrite (bool) – If True, allows overwriting of previous conversion













	
heudiconv.convert.nipype_convert(item_dicoms: list[str], prefix: str, with_prov: bool, bids_options: str | None, tmpdir: str, dcmconfig: str | None = None) → tuple[Node, str | None]

	Converts DICOMs grouped from heuristic using Nipype’s Dcm2niix interface.


	Parameters:

	
	item_dicoms (list) – DICOM files to convert


	prefix (str) – Heuristic output path


	with_prov (bool) – Store provenance information


	bids_options (str or None) – If not None then output BIDS sidecar JSONs
String may contain bids specific options


	tmpdir (str) – Conversion working directory


	dcmconfig (str, optional) – JSON file used for additional Dcm2niix configuration













	
heudiconv.convert.save_converted_files(res: Node, item_dicoms: list[str], bids_options: str | None, outtype: str, prefix: str, outname_bids: str, overwrite: bool) → list[str]

	Copy converted files from tempdir to output directory.

Will rename files if necessary.


	Parameters:

	
	res (Node) – Nipype conversion Node with results


	item_dicoms (list) – Filenames of converted DICOMs


	bids (list or None) – If not list save to BIDS
List may contain bids specific options


	prefix (str)






	Returns:

	Converted BIDS files



	Return type:

	bids_outfiles










	
heudiconv.convert.update_complex_name(metadata: dict[str, Any], filename: str) → str

	Insert _part-<mag|phase> entity into filename if data are from a
sequence with magnitude/phase part.


	Parameters:

	
	metadata (dict) – Scan metadata dictionary from BIDS sidecar file.


	filename (str) – Incoming filename






	Returns:

	filename – Updated filename with part entity added in appropriate position.



	Return type:

	str










	
heudiconv.convert.update_multiecho_name(metadata: dict[str, Any], filename: str, echo_times: list[float]) → str

	Insert _echo-<num> entity into filename if data are from a multi-echo
sequence.


	Parameters:

	
	metadata (dict) – Scan metadata dictionary from BIDS sidecar file.


	filename (str) – Incoming filename


	echo_times (list) – List of all echo times from scan. Used to determine the echo number
(i.e., index) if field is missing from metadata.






	Returns:

	filename – Updated filename with echo entity added, if appropriate.



	Return type:

	str










	
heudiconv.convert.update_uncombined_name(metadata: dict[str, Any], filename: str, channel_names: list[str]) → str

	Insert _ch-<num> entity into filename if data are from a sequence
with “save uncombined”.


	Parameters:

	
	metadata (dict) – Scan metadata dictionary from BIDS sidecar file.


	filename (str) – Incoming filename


	channel_names (list) – List of all channel names from scan. Used to determine the channel
number (i.e., index) if field is missing from metadata.






	Returns:

	filename – Updated filename with ch entity added, if appropriate.



	Return type:

	str












            

          

      

      

    

  

    
      
          
            
  
DICOMS


	
class heudiconv.dicoms.CustomSeqinfoT(*args, **kwargs)

	




	
class heudiconv.dicoms.SeriesID(series_number, protocol_name, file_studyUID)

	
	
file_studyUID: str | None

	Alias for field number 2






	
protocol_name: str

	Alias for field number 1






	
series_number: int

	Alias for field number 0










	
heudiconv.dicoms.compress_dicoms(dicom_list: list[str], out_prefix: str, tempdirs: TempDirs, overwrite: bool) → str | None

	Archives DICOMs into a tarball

Also tries to do it reproducibly, so takes the date for files
and target tarball based on the series time (within the first file)


	Parameters:

	
	dicom_list (list of str) – list of dicom files


	out_prefix (str) – output path prefix, including the portion of the output file name
before .dicom.tgz suffix


	tempdirs (TempDirs) – TempDirs object to handle multiple tmpdirs


	overwrite (bool) – Overwrite existing tarfiles






	Returns:

	filename – Result tarball



	Return type:

	str










	
heudiconv.dicoms.create_seqinfo(mw: dw.Wrapper, series_files: list[str], series_id: str, custom_seqinfo: CustomSeqinfoT | None = None) → SeqInfo

	Generate sequence info


	Parameters:

	
	mw (Wrapper)


	series_files (list)


	series_id (str)













	
heudiconv.dicoms.embed_dicom_and_nifti_metadata(dcmfiles: List[str], niftifile: str, infofile: str | Path, bids_info: Dict[str, Any] | None) → None

	Embed metadata from nifti (affine etc) and dicoms into infofile (json)

niftifile should exist. Its affine’s orientation information is used while
establishing new NiftiImage out of dicom stack and together with bids_info
(if provided) is dumped into json infofile


	Parameters:

	
	dcmfiles


	niftifile


	infofile


	bids_info (dict) – Additional metadata to be embedded. infofile is overwritten if exists,
so here you could pass some metadata which would overload (at the first
level of the dict structure, no recursive fancy updates) what is obtained
from nifti and dicoms













	
heudiconv.dicoms.embed_metadata_from_dicoms(bids_options: str | None, item_dicoms: list[str], outname: str, outname_bids: str, prov_file: str | None, scaninfo: str, tempdirs: TempDirs, with_prov: bool) → None

	Enhance sidecar information file with more information from DICOMs


	Parameters:

	
	bids_options


	item_dicoms


	outname


	outname_bids


	prov_file


	scaninfo


	tempdirs


	with_prov













	
heudiconv.dicoms.get_datetime_from_dcm(dcm_data: FileDataset) → datetime | None

	Extract datetime from filedataset, or return None is no datetime information found.


	Parameters:

	dcm_data (dcm.FileDataset) – DICOM with header, e.g., as ready by pydicom.dcmread.
Objects with __getitem__ and have those keys with values properly formatted may also work



	Returns:

	One of several datetimes that are related to when the scan occurred, or None if no datetime can be found



	Return type:

	Optional[datetime.datetime]





Notes

The following fields are checked in order


	AcquisitionDate & AcquisitionTime  (0008,0022); (0008,0032)


	AcquisitionDateTime (0008,002A);


	SeriesDate & SeriesTime  (0008,0021); (0008,0031)









	
heudiconv.dicoms.get_reproducible_int(dicom_list: list[str]) → int

	Get integer that can be used to reproducibly sort input DICOMs, which is based on when they were acquired.


	Parameters:

	dicom_list (list[str]) – Paths to existing DICOM files



	Returns:

	An integer relating to when the DICOM was acquired



	Return type:

	int



	Raises:

	AssertionError – 





Notes


	
	When date and time for can be read (see get_datetime_from_dcm()), return
	that value as time in seconds since epoch (i.e., Jan 1 1970).







	
	In cases where a date/time/datetime is not available (e.g., anonymization stripped this info), return
	epoch + AcquisitionNumber (in seconds), which is AcquisitionNumber as an integer







	If 1 and 2 are not possible, then raise AssertionError and provide message about missing information




Cases are based on only the first element of the dicom_list.






	
heudiconv.dicoms.group_dicoms_into_seqinfos(files: list[str], grouping: str, file_filter: Callable[[str], Any] | None = None, dcmfilter: Callable[[Dataset], Any] | None = None, flatten: Literal[False] = False, custom_grouping: str | Callable[[list[str], Callable[[dcm.dataset.Dataset], Any] | None, type[SeqInfo]], dict[SeqInfo, list[str]]] | None = None, custom_seqinfo: CustomSeqinfoT | None = None) → dict[str | None, dict[SeqInfo, list[str]]]

	
heudiconv.dicoms.group_dicoms_into_seqinfos(files: list[str], grouping: str, file_filter: Callable[[str], Any] | None = None, dcmfilter: Callable[[Dataset], Any] | None = None, *, flatten: Literal[True], custom_grouping: str | Callable[[list[str], Callable[[dcm.dataset.Dataset], Any] | None, type[SeqInfo]], dict[SeqInfo, list[str]]] | None = None, custom_seqinfo: CustomSeqinfoT | None = None) → dict[SeqInfo, list[str]]

	Process list of dicoms and return seqinfo and file group
seqinfo contains per-sequence extract of fields from DICOMs which
will be later provided into heuristics to decide on filenames


	Parameters:

	
	files (list of str) – List of files to consider


	grouping ({'studyUID', 'accession_number', 'all', 'custom'}) – How to group DICOMs for conversion. If ‘custom’, see custom_grouping
parameter.


	file_filter (callable, optional) – Applied to each item of filenames. Should return True if file needs to be
kept, False otherwise.


	dcmfilter (callable, optional) – If called on dcm_data and returns True, it is used to set series_id


	flatten (bool, optional) – Creates a flattened seqinfo with corresponding DICOM files. True when
invoked with dicom_dir_template.


	custom_grouping (str or callable, optional) – grouping key defined within heuristic. Can be a string of a
DICOM attribute, or a method that handles more complex groupings.


	custom_seqinfo (callable, optional) – A callable which will be provided MosaicWrapper giving possibility to
extract any custom DICOM metadata of interest.






	Returns:

	
	seqinfo (list of list) – seqinfo is a list of info entries per each sequence (some entry
there defines a key for filegrp)


	filegrp (dict) – filegrp is a dictionary with files grouped per each sequence















	
heudiconv.dicoms.parse_private_csa_header(dcm_data: Dataset, _public_attr: str, private_attr: str, default: str | None = None) → str

	Parses CSA header in cases where value is not defined publicly


	Parameters:

	
	dcm_data (pydicom Dataset object) – DICOM metadata


	public_attr (string) – non-private DICOM attribute


	private_attr (string) – private DICOM attribute


	(optional) (default) – default value if private_attr not found






	Returns:

	val (default – private attribute value or default



	Return type:

	empty string)










	
heudiconv.dicoms.validate_dicom(fl: str, dcmfilter: Callable[[Dataset], Any] | None) → tuple[Wrapper, tuple[int, str], str | None] | None

	Parse DICOM attributes. Returns None if not valid.








            

          

      

      

    

  

    
      
          
            
  
Parsing


	
heudiconv.parser.find_files(regex: str, topdir: list[str] | tuple[str, ...] | str = '.', exclude: str | None = None, exclude_vcs: bool = True, dirs: bool = False) → Iterator[str]

	Generator to find files matching regex


	Parameters:

	
	regex (string)


	exclude (string, optional) – Matches to exclude


	exclude_vcs – If True, excludes commonly known VCS subdirectories.  If string, used
as regex to exclude those files (regex: /.(?:git|gitattributes|svn|bzr|hg)(?:/|$))


	topdir (string or list, optional) – Directory where to search


	dirs (bool, optional) – Either to match directories as well as files













	
heudiconv.parser.get_extracted_dicoms(fl: Iterable[str]) → ItemsView[str | None, list[str]]

	Given a collection of files and/or directories, list out and possibly
extract the contents from archives.


	Parameters:

	fl – Files (possibly archived) to process.



	Returns:

	The absolute paths of (possibly newly extracted) files.



	Return type:

	ItemsView[str | None, list[str]]





Notes

For ‘classical’ heudiconv, if multiple archives are provided, they
correspond to different sessions, so here we would group into sessions
and return pairs sessionid, files  with sessionid being None if no
“sessions” detected for that file or there was just a single tarball in the
list.

When contents of fl appear to be an unpackable archive, the contents are
extracted into utils.TempDirs(f’heudiconvDCM’) and the mode of all
extracted files is set to 700.

When contents of fl are a list of unarchived files, they are treated as
a single session.

When contents of fl are a list of unarchived and archived files, the
unarchived files are grouped into a single session (key: None). If there is
only one archived file, the contents of that file are grouped with
the unarchived file. If there are multiple archived files, they are grouped
into separate sessions.






	
heudiconv.parser.get_study_sessions(dicom_dir_template: str | None, files_opt: list[str] | None, heuristic: ModuleType, outdir: str, session: str | None, sids: list[str] | None, grouping: str = 'studyUID') → dict[StudySessionInfo, list[str] | dict[SeqInfo, list[str]]]

	Sort files or dicom seqinfos into study_sessions.

study_sessions put together files for a single session of a subject
in a study.  Two major possible workflows:


	if dicom_dir_template provided – doesn’t pre-load DICOMs and just
loads files pointed by each subject and possibly sessions as corresponding
to different tarballs.


	if files_opt is provided, sorts all DICOMs it can find under those paths











            

          

      

      

    

  

    
      
          
            
  
Batch Queuing


	
heudiconv.queue.clean_args(hargs: list[str], iterarg: str, iteridx: int) → list[str]

	Filters arguments for batch submission.


	Parameters:

	
	hargs (list) – Command-line arguments


	iterarg (str) – Multi-argument to index (subjects OR files)


	iteridx (int) – iterarg index to submit






	Returns:

	cmdargs – Filtered arguments for batch submission



	Return type:

	list





Example

>>> from heudiconv.queue import clean_args
>>> cmd = ['heudiconv', '-d', '/some/{subject}/path',
...                     '-q', 'SLURM',
...                     '-s', 'sub-1', 'sub-2', 'sub-3', 'sub-4']
>>> clean_args(cmd, 'subjects', 0)
['heudiconv', '-d', '/some/{subject}/path', '-s', 'sub-1']










	
heudiconv.queue.queue_conversion(queue: str, iterarg: str, iterables: int, queue_args: str | None = None) → None

	Write out conversion arguments to file and submit to a job scheduler.
Parses sys.argv for heudiconv arguments.


	Parameters:

	
	queue (string) – Batch scheduler to use


	iterarg (str) – Multi-argument to index (subjects OR files)


	iterables (int) – Number of iterarg arguments


	queue_args (string (optional)) – Additional queue arguments for job submission















            

          

      

      

    

  

    
      
          
            
  
Utility

Utility objects and functions


	
class heudiconv.utils.File(name: str, executable: bool = False)

	Helper for a file entry in the create_tree/@with_tree

It allows to define additional settings for entries






	
class heudiconv.utils.SeqInfo(total_files_till_now, example_dcm_file, series_id, dcm_dir_name, series_files, unspecified, dim1, dim2, dim3, dim4, TR, TE, protocol_name, is_motion_corrected, is_derived, patient_id, study_description, referring_physician_name, series_description, sequence_name, image_type, accession_number, patient_age, patient_sex, date, series_uid, time, custom)

	
	
TE: float

	Alias for field number 11






	
TR: float

	Alias for field number 10






	
accession_number: str

	Alias for field number 21






	
custom: Hashable | None

	Alias for field number 27






	
date: str | None

	Alias for field number 24






	
dcm_dir_name: str

	Alias for field number 3






	
dim1: int

	Alias for field number 6






	
dim2: int

	Alias for field number 7






	
dim3: int

	Alias for field number 8






	
dim4: int

	Alias for field number 9






	
example_dcm_file: str

	Alias for field number 1






	
image_type: tuple[str, ...]

	Alias for field number 20






	
is_derived: bool

	Alias for field number 14






	
is_motion_corrected: bool

	Alias for field number 13






	
patient_age: str | None

	Alias for field number 22






	
patient_id: str | None

	Alias for field number 15






	
patient_sex: str | None

	Alias for field number 23






	
protocol_name: str

	Alias for field number 12






	
referring_physician_name: str

	Alias for field number 17






	
sequence_name: str

	Alias for field number 19






	
series_description: str

	Alias for field number 18






	
series_files: int

	Alias for field number 4






	
series_id: str

	Alias for field number 2






	
series_uid: str | None

	Alias for field number 25






	
study_description: str

	Alias for field number 16






	
time: str | None

	Alias for field number 26






	
total_files_till_now: int

	Alias for field number 0






	
unspecified: str

	Alias for field number 5










	
class heudiconv.utils.StudySessionInfo(locator, session, subject)

	
	
locator: str | None

	Alias for field number 0






	
session: str | None

	Alias for field number 1






	
subject: str | None

	Alias for field number 2










	
class heudiconv.utils.TempDirs

	A helper to centralize handling and cleanup of dirs






	
heudiconv.utils.anonymize_sid(sid: AnyStr, anon_sid_cmd: str) → AnyStr

	
	Raises:

	ValueError – if script returned an empty string (after whitespace stripping),
    or output with multiple words/lines.










	
heudiconv.utils.assure_no_file_exists(path: str | Path) → None

	Check if file or symlink (git-annex?) exists, and if so – remove






	
heudiconv.utils.clear_temp_dicoms(item_dicoms: list[str]) → None

	Ensures DICOM temporary directories are safely cleared






	
heudiconv.utils.create_file_if_missing(filename: str, content: str) → bool

	Create file if missing, so we do not
override any possibly introduced changes






	
heudiconv.utils.create_tree(path: str, tree: Sequence[Tuple[str | File, str | TreeSpec | dict]] | Mapping[str, str | TreeSpec | dict], archives_leading_dir: bool = True) → None

	Given a list of tuples (name, load) or a dict create such a tree

if load is a tuple or a dict itself – that would create either a subtree
or an archive with that content and place it into the tree if name ends
with .tar.gz






	
heudiconv.utils.docstring_parameter(*sub: str) → Callable[[T], T]

	Borrowed from https://stackoverflow.com/a/10308363/6145776






	
heudiconv.utils.get_datetime(date: str, time: str, *, microseconds: bool = True) → str

	Combine date and time from dicom to isoformat.


	Parameters:

	
	date (str) – Date in YYYYMMDD format.


	time (str) – Time in either HHMMSS.ffffff format or HHMMSS format.


	microseconds (bool, optional) – Either to include microseconds in the output






	Returns:

	datetime_str – Combined date and time in ISO format, with microseconds as
if fraction was provided in ‘time’, and ‘microseconds’ was
True.



	Return type:

	str










	
heudiconv.utils.get_known_heuristic_names() → list[str]

	Return a list of heuristic names present under heudiconv/heuristics






	
heudiconv.utils.get_typed_attr(obj: Any, attr: str, _type: type[T], default: V) → T | V

	
heudiconv.utils.get_typed_attr(obj: Any, attr: str, _type: type[T], default: None = None) → T | None

	Typecasts an object’s named attribute. If the attribute cannot be
converted, the default value is returned instead.


	Parameters:

	
	obj (Object)


	attr (Attribute)


	_type (Type)


	default (value, optional)













	
heudiconv.utils.is_readonly(path: str) → bool

	Return True if it is a fully read-only file (dereferences the symlink)






	
heudiconv.utils.json_dumps(json_obj: Any, indent: int = 2, sort_keys: bool = True) → str

	Unified (default indent and sort_keys) invocation of json.dumps






	
heudiconv.utils.json_dumps_pretty(j: Any, indent: int = 2, sort_keys: bool = True) → str

	Given a json structure, pretty print it by colliding numeric arrays
into a line.

If resultant structure differs from original – throws exception






	
heudiconv.utils.load_heuristic(heuristic: str) → ModuleType

	Load heuristic from the file, return the module






	
heudiconv.utils.load_json(filename: str | Path, retry: int = 0) → Any

	Load data from a json file


	Parameters:

	
	filename (str or Path) – Filename to load data from.


	retry (int, optional) – Number of times to retry opening/loading the file in case of
failure.  Code will sleep for 0.1 seconds between retries.
Could be used in code which is not sensitive to order effects
(e.g. like populating bids templates where the last one to
do it, would make sure it would be the correct/final state).






	Returns:

	data



	Return type:

	dict










	
heudiconv.utils.remove_prefix(s: str, pre: str) → str

	Remove prefix from the beginning of the string


	Parameters:

	
	s (str)


	pre (str)






	Returns:

	s – string with “pre” removed from the beginning (if present)



	Return type:

	str










	
heudiconv.utils.remove_suffix(s: str, suf: str) → str

	Remove suffix from the end of the string


	Parameters:

	
	s (str)


	suf (str)






	Returns:

	s – string with “suf” removed from the end (if present)



	Return type:

	str










	
heudiconv.utils.safe_copyfile(src: str, dest: str, overwrite: bool = False) → None

	Copy file but blow if destination name already exists






	
heudiconv.utils.safe_movefile(src: str, dest: str, overwrite: bool = False) → None

	Move file but blow if destination name already exists






	
heudiconv.utils.save_json(filename: str | Path, data: Any, indent: int = 2, sort_keys: bool = True, pretty: bool = False) → None

	Save data to a json file


	Parameters:

	
	filename (str or Path) – Filename to save data in.


	data (dict) – Dictionary to save in json file.


	indent (int, optional)


	sort_keys (bool, optional)


	pretty (bool, optional)













	
heudiconv.utils.set_readonly(path: str, read_only: bool = True) → int

	Make file read only or writeable while preserving “access levels”

So if file was not readable by others, it should remain not readable by
others.


	Parameters:

	
	path (str)


	read_only (bool, optional) – If True (default) - would make it read-only. If False, would make it
writeable for levels where it is readable













	
heudiconv.utils.slim_down_info(j: dict[str, Any]) → dict[str, Any]

	Given an aggregated info structure, removes excessive details

Such as CSA fields, and SourceImageSequence which on Siemens files could be
huge and not providing any additional immediately usable information.
If needed, could be recovered from stored DICOMs






	
heudiconv.utils.strptime_micr(date_string: str, fmt: str) → datetime

	Decorate strptime while supporting optional [.%f] in the format at the end


	Parameters:

	
	date_string (str) – Date string to parse


	fmt (str) – Format string. If it ends with [.%f], we keep it if date_string ends with
‘.d+’ regex and not if it does not.













	
heudiconv.utils.treat_infofile(filename: str) → None

	Tune up generated .json file (slim down, pretty-print for humans).






	
heudiconv.utils.update_json(json_file: str | Path, new_data: dict[str, Any], pretty: bool = False) → None

	Adds a given field (and its value) to a json file


	Parameters:

	
	json_file (str or Path) – path for the corresponding json file


	new_data (dict) – pair of “key”: “value” to add to the json file


	pretty (bool) – argument to be passed to save_json















            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   h
   


   
     		 	

     		
       h	

     
       	[image: -]
       	
       heudiconv	
       

     
       	
       	   
       heudiconv.bids	
       

     
       	
       	   
       heudiconv.convert	
       

     
       	
       	   
       heudiconv.dicoms	
       

     
       	
       	   
       heudiconv.parser	
       

     
       	
       	   
       heudiconv.queue	
       

     
       	
       	   
       heudiconv.utils	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 


A


  	
      	accession_number (heudiconv.utils.SeqInfo attribute)


      	add_rows_to_scans_keys_file() (in module heudiconv.bids)


  

  	
      	add_taskname_to_infofile() (in module heudiconv.convert)


      	anonymize_sid() (in module heudiconv.utils)


      	assure_no_file_exists() (in module heudiconv.utils)


  





B


  	
      	BIDSError


  

  	
      	BIDSFile (class in heudiconv.bids)


      	bvals_are_zero() (in module heudiconv.convert)


  





C


  	
      	clean_args() (in module heudiconv.queue)


      	clear_temp_dicoms() (in module heudiconv.utils)


      	compress_dicoms() (in module heudiconv.dicoms)


      	convert() (in module heudiconv.convert)


      	convert_dicom() (in module heudiconv.convert)


  

  	
      	convert_sid_bids() (in module heudiconv.bids)


      	create_file_if_missing() (in module heudiconv.utils)


      	create_seqinfo() (in module heudiconv.dicoms)


      	create_tree() (in module heudiconv.utils)


      	custom (heudiconv.utils.SeqInfo attribute)


      	CustomSeqinfoT (class in heudiconv.dicoms)


  





D


  	
      	date (heudiconv.utils.SeqInfo attribute)


      	dcm_dir_name (heudiconv.utils.SeqInfo attribute)


      	dim1 (heudiconv.utils.SeqInfo attribute)


  

  	
      	dim2 (heudiconv.utils.SeqInfo attribute)


      	dim3 (heudiconv.utils.SeqInfo attribute)


      	dim4 (heudiconv.utils.SeqInfo attribute)


      	docstring_parameter() (in module heudiconv.utils)


  





E


  	
      	embed_dicom_and_nifti_metadata() (in module heudiconv.dicoms)


  

  	
      	embed_metadata_from_dicoms() (in module heudiconv.dicoms)


      	example_dcm_file (heudiconv.utils.SeqInfo attribute)


  





F


  	
      	File (class in heudiconv.utils)


      	file_studyUID (heudiconv.dicoms.SeriesID attribute)


      	find_compatible_fmaps_for_run() (in module heudiconv.bids)


  

  	
      	find_compatible_fmaps_for_session() (in module heudiconv.bids)


      	find_files() (in module heudiconv.parser)


      	find_fmap_groups() (in module heudiconv.bids)


      	find_subj_ses() (in module heudiconv.bids)


  





G


  	
      	get_datetime() (in module heudiconv.utils)


      	get_datetime_from_dcm() (in module heudiconv.dicoms)


      	get_extracted_dicoms() (in module heudiconv.parser)


      	get_formatted_scans_key_row() (in module heudiconv.bids)


      	get_key_info_for_fmap_assignment() (in module heudiconv.bids)


  

  	
      	get_known_heuristic_names() (in module heudiconv.utils)


      	get_reproducible_int() (in module heudiconv.dicoms)


      	get_shim_setting() (in module heudiconv.bids)


      	get_study_sessions() (in module heudiconv.parser)


      	get_typed_attr() (in module heudiconv.utils)


      	group_dicoms_into_seqinfos() (in module heudiconv.dicoms)


  





H


  	
      	
    heudiconv.bids

      
        	module


      


      	
    heudiconv.convert

      
        	module


      


      	
    heudiconv.dicoms

      
        	module


      


  

  	
      	
    heudiconv.parser

      
        	module


      


      	
    heudiconv.queue

      
        	module


      


      	
    heudiconv.utils

      
        	module


      


      	HEUDICONV_VERSION_JSON_KEY (in module heudiconv.bids)


  





I


  	
      	image_type (heudiconv.utils.SeqInfo attribute)


      	is_derived (heudiconv.utils.SeqInfo attribute)


  

  	
      	is_motion_corrected (heudiconv.utils.SeqInfo attribute)


      	is_readonly() (in module heudiconv.utils)


  





J


  	
      	json_dumps() (in module heudiconv.utils)


  

  	
      	json_dumps_pretty() (in module heudiconv.utils)


  





L


  	
      	load_heuristic() (in module heudiconv.utils)


  

  	
      	load_json() (in module heudiconv.utils)


      	locator (heudiconv.utils.StudySessionInfo attribute)


  





M


  	
      	maybe_na() (in module heudiconv.bids)


      	
    module

      
        	heudiconv.bids


        	heudiconv.convert


        	heudiconv.dicoms


        	heudiconv.parser


        	heudiconv.queue


        	heudiconv.utils


      


  





N


  	
      	nipype_convert() (in module heudiconv.convert)


  





P


  	
      	parse() (heudiconv.bids.BIDSFile class method)


      	parse_private_csa_header() (in module heudiconv.dicoms)


      	patient_age (heudiconv.utils.SeqInfo attribute)


      	patient_id (heudiconv.utils.SeqInfo attribute)


      	patient_sex (heudiconv.utils.SeqInfo attribute)


  

  	
      	populate_aggregated_jsons() (in module heudiconv.bids)


      	populate_bids_templates() (in module heudiconv.bids)


      	populate_intended_for() (in module heudiconv.bids)


      	protocol_name (heudiconv.dicoms.SeriesID attribute)

      
        	(heudiconv.utils.SeqInfo attribute)


      


  





Q


  	
      	queue_conversion() (in module heudiconv.queue)


  





R


  	
      	referring_physician_name (heudiconv.utils.SeqInfo attribute)


  

  	
      	remove_prefix() (in module heudiconv.utils)


      	remove_suffix() (in module heudiconv.utils)


  





S


  	
      	safe_copyfile() (in module heudiconv.utils)


      	safe_movefile() (in module heudiconv.utils)


      	sanitize_label() (in module heudiconv.bids)


      	save_converted_files() (in module heudiconv.convert)


      	save_json() (in module heudiconv.utils)


      	save_scans_key() (in module heudiconv.bids)


      	select_fmap_from_compatible_groups() (in module heudiconv.bids)


      	SeqInfo (class in heudiconv.utils)


      	sequence_name (heudiconv.utils.SeqInfo attribute)


      	series_description (heudiconv.utils.SeqInfo attribute)


      	series_files (heudiconv.utils.SeqInfo attribute)


  

  	
      	series_id (heudiconv.utils.SeqInfo attribute)


      	series_number (heudiconv.dicoms.SeriesID attribute)


      	series_uid (heudiconv.utils.SeqInfo attribute)


      	SeriesID (class in heudiconv.dicoms)


      	session (heudiconv.utils.StudySessionInfo attribute)


      	set_readonly() (in module heudiconv.utils)


      	slim_down_info() (in module heudiconv.utils)


      	strptime_micr() (in module heudiconv.utils)


      	study_description (heudiconv.utils.SeqInfo attribute)


      	StudySessionInfo (class in heudiconv.utils)


      	subject (heudiconv.utils.StudySessionInfo attribute)


  





T


  	
      	TE (heudiconv.utils.SeqInfo attribute)


      	TempDirs (class in heudiconv.utils)


      	time (heudiconv.utils.SeqInfo attribute)


      	total_files_till_now (heudiconv.utils.SeqInfo attribute)


  

  	
      	TR (heudiconv.utils.SeqInfo attribute)


      	treat_age() (in module heudiconv.bids)


      	treat_infofile() (in module heudiconv.utils)


      	tuneup_bids_json_files() (in module heudiconv.bids)


  





U


  	
      	unspecified (heudiconv.utils.SeqInfo attribute)


      	update_complex_name() (in module heudiconv.convert)


  

  	
      	update_json() (in module heudiconv.utils)


      	update_multiecho_name() (in module heudiconv.convert)


      	update_uncombined_name() (in module heudiconv.convert)


  





V


  	
      	validate_dicom() (in module heudiconv.dicoms)


  







            

          

      

      

    

  _images/environment.png
Acquisition System (e.g. fMRI)
s Time-domain Volumetric
alog k-space Data Reconstruction
Metadata DICOMs
»|
Operator Input
Analysis System
v

Heuristic

(built-in or user-defined)

Y
—

Plots Analysis Summaries Preprocessed Data Standardized Raw Data
(e.g. PDF) (e.g. CSV) (e.g. BIDS NIfTI) (e.g. BIDS NIfTI)
Shareable Shareable Shareable Shareable






nav.xhtml

    
      Table of Contents


      
        		
          HeuDiConv
        


        		
          Installation
          
            		
              Local
            


            		
              Containers
            


            		
              Singularity
            


            		
              Singularity YODA style using ///repronim/containers
            


          


        


        		
          Changes
        


        		
          Tutorials
          
            		
              Quickstart
              
                		
                  Prepare Dataset
                


                		
                  Basic Conversion
                


                		
                  Output
                


                		
                  Validation
                


                		
                  Next
                


              


            


            		
              Custom Heuristics
              
                		
                  Step 1: Generate Skeleton
                


                		
                  Step 2: Modify Heuristic
                


                		
                  Step 3:
                


                		
                  Exploring Criteria
                


              


            


            		
              Reproin
              
                		
                  Get Example Dataset
                


                		
                  Convert and organize
                


                		
                  Output Directory Structure
                


              


            


            		
              External Tutorials
            


          


        


        		
          Heuristics File
          
            		
              Provided Heuristics
              
                		
                  Components
                


              


            


          


        


        		
          CLI Reference
          
            		
              Named Arguments
            


            		
              Conversion submission options
            


          


        


        		
          Using heudiconv in a Container
          
            		
              Bind mount
              
                		
                  Docker Permissions
                


                		
                  Podman Permissions
                


              


            


            		
              Other Common Options
            


          


        


        		
          API Reference
          
            		
              BIDS
              
                		
                  BIDSError
                


                		
                  BIDSFile
                


                		
                  HEUDICONV_VERSION_JSON_KEY
                


                		
                  add_rows_to_scans_keys_file()
                


                		
                  convert_sid_bids()
                


                		
                  find_compatible_fmaps_for_run()
                


                		
                  find_compatible_fmaps_for_session()
                


                		
                  find_fmap_groups()
                


                		
                  find_subj_ses()
                


                		
                  get_formatted_scans_key_row()
                


                		
                  get_key_info_for_fmap_assignment()
                


                		
                  get_shim_setting()
                


                		
                  maybe_na()
                


                		
                  populate_aggregated_jsons()
                


                		
                  populate_bids_templates()
                


                		
                  populate_intended_for()
                


                		
                  sanitize_label()
                


                		
                  save_scans_key()
                


                		
                  select_fmap_from_compatible_groups()
                


                		
                  treat_age()
                


                		
                  tuneup_bids_json_files()
                


              


            


            		
              Conversion
              
                		
                  add_taskname_to_infofile()
                


                		
                  bvals_are_zero()
                


                		
                  convert()
                


                		
                  convert_dicom()
                


                		
                  nipype_convert()
                


                		
                  save_converted_files()
                


                		
                  update_complex_name()
                


                		
                  update_multiecho_name()
                


                		
                  update_uncombined_name()
                


              


            


            		
              DICOMS
              
                		
                  CustomSeqinfoT
                


                		
                  SeriesID
                


                		
                  compress_dicoms()
                


                		
                  create_seqinfo()
                


                		
                  embed_dicom_and_nifti_metadata()
                


                		
                  embed_metadata_from_dicoms()
                


                		
                  get_datetime_from_dcm()
                


                		
                  get_reproducible_int()
                


                		
                  group_dicoms_into_seqinfos()
                


                		
                  parse_private_csa_header()
                


                		
                  validate_dicom()
                


              


            


            		
              Parsing
              
                		
                  find_files()
                


                		
                  get_extracted_dicoms()
                


                		
                  get_study_sessions()
                


              


            


            		
              Batch Queuing
              
                		
                  clean_args()
                


                		
                  queue_conversion()
                


              


            


            		
              Utility
              
                		
                  File
                


                		
                  SeqInfo
                


                		
                  StudySessionInfo
                


                		
                  TempDirs
                


                		
                  anonymize_sid()
                


                		
                  assure_no_file_exists()
                


                		
                  clear_temp_dicoms()
                


                		
                  create_file_if_missing()
                


                		
                  create_tree()
                


                		
                  docstring_parameter()
                


                		
                  get_datetime()
                


                		
                  get_known_heuristic_names()
                


                		
                  get_typed_attr()
                


                		
                  is_readonly()
                


                		
                  json_dumps()
                


                		
                  json_dumps_pretty()
                


                		
                  load_heuristic()
                


                		
                  load_json()
                


                		
                  remove_prefix()
                


                		
                  remove_suffix()
                


                		
                  safe_copyfile()
                


                		
                  safe_movefile()
                


                		
                  save_json()
                


                		
                  set_readonly()
                


                		
                  slim_down_info()
                


                		
                  strptime_micr()
                


                		
                  treat_infofile()
                


                		
                  update_json()
                


              


            


          


        


      


    
  

_images/workflow.png
DICOMs NIfTI (e.g. BIDS)

.d;omdlr/ , @By _dataset/
1208200617178 _22 y 2 ;
. participants.tsv
D1208200617178_22_8973.dcm Approach 1: Edit proposed names, then convert. Bsub-01/
[21208200617178_22_8943.dcm Mmanat/

1208200617178 _22_2973.dcm .heudiconv dem2niix & sub-01_Tiw.nii.gz

1208200617178 _22_8923.dcm Wmunc/
E:;gzggg:m;:,g,g‘;gZzlr': B sub-01_task-rest _bold.nii.gz
_22_ - sub-01_task-rest_bold.json
1208200617178 _22_7328.dcm . -d@/ B -0
0 1208200617178 _22_9264.dcm Approach 2: Automatically use proposed names. i
1208200617178 _22_9967.dcm
1208200617178 _22_3894.dcm D sub-01_dwi.bval
1208200617178 _22_3899.dcm =) Subrofdw' bva
Sub- wi.ovec
@1208200617178_23/ W02/ I
@1208200617178_25/

@Bsub-04/

2 sub-01_dwi.nii.gz
8 sub-01_dwijson





_static/plus.png





_static/file.png





_static/minus.png





